This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of Gleason p. 311 and its converse. (Contributed by NM, 15-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | binom2.1 | ⊢ 𝐴 ∈ ℂ | |
| binom2.2 | ⊢ 𝐵 ∈ ℂ | ||
| Assertion | sqeqori | ⊢ ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binom2.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | binom2.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | 1 2 | subsqi | ⊢ ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) |
| 4 | 3 | eqeq1i | ⊢ ( ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ↔ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) = 0 ) |
| 5 | 1 | sqcli | ⊢ ( 𝐴 ↑ 2 ) ∈ ℂ |
| 6 | 2 | sqcli | ⊢ ( 𝐵 ↑ 2 ) ∈ ℂ |
| 7 | 5 6 | subeq0i | ⊢ ( ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ↔ ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 8 | 1 2 | addcli | ⊢ ( 𝐴 + 𝐵 ) ∈ ℂ |
| 9 | 1 2 | subcli | ⊢ ( 𝐴 − 𝐵 ) ∈ ℂ |
| 10 | 8 9 | mul0ori | ⊢ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) = 0 ↔ ( ( 𝐴 + 𝐵 ) = 0 ∨ ( 𝐴 − 𝐵 ) = 0 ) ) |
| 11 | 4 7 10 | 3bitr3i | ⊢ ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( ( 𝐴 + 𝐵 ) = 0 ∨ ( 𝐴 − 𝐵 ) = 0 ) ) |
| 12 | orcom | ⊢ ( ( ( 𝐴 + 𝐵 ) = 0 ∨ ( 𝐴 − 𝐵 ) = 0 ) ↔ ( ( 𝐴 − 𝐵 ) = 0 ∨ ( 𝐴 + 𝐵 ) = 0 ) ) | |
| 13 | 1 2 | subeq0i | ⊢ ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) |
| 14 | 1 2 | subnegi | ⊢ ( 𝐴 − - 𝐵 ) = ( 𝐴 + 𝐵 ) |
| 15 | 14 | eqeq1i | ⊢ ( ( 𝐴 − - 𝐵 ) = 0 ↔ ( 𝐴 + 𝐵 ) = 0 ) |
| 16 | 2 | negcli | ⊢ - 𝐵 ∈ ℂ |
| 17 | 1 16 | subeq0i | ⊢ ( ( 𝐴 − - 𝐵 ) = 0 ↔ 𝐴 = - 𝐵 ) |
| 18 | 15 17 | bitr3i | ⊢ ( ( 𝐴 + 𝐵 ) = 0 ↔ 𝐴 = - 𝐵 ) |
| 19 | 13 18 | orbi12i | ⊢ ( ( ( 𝐴 − 𝐵 ) = 0 ∨ ( 𝐴 + 𝐵 ) = 0 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) |
| 20 | 11 12 19 | 3bitri | ⊢ ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) |