This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine and cosine of _pi / 4 . (Contributed by Paul Chapman, 25-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincos4thpi | ⊢ ( ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ∧ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | 2halves | ⊢ ( 1 ∈ ℂ → ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 5 | sincosq1eq | ⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ∧ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) → ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) = ( cos ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) ) | |
| 6 | 1 1 4 5 | mp3an | ⊢ ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) = ( cos ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) |
| 7 | 6 | oveq2i | ⊢ ( ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) · ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) ) = ( ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) · ( cos ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) ) |
| 8 | 7 | oveq2i | ⊢ ( 2 · ( ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) · ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) ) ) = ( 2 · ( ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) · ( cos ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) ) ) |
| 9 | 2cn | ⊢ 2 ∈ ℂ | |
| 10 | pire | ⊢ π ∈ ℝ | |
| 11 | 10 | recni | ⊢ π ∈ ℂ |
| 12 | 2ne0 | ⊢ 2 ≠ 0 | |
| 13 | 2 9 11 9 12 12 | divmuldivi | ⊢ ( ( 1 / 2 ) · ( π / 2 ) ) = ( ( 1 · π ) / ( 2 · 2 ) ) |
| 14 | 11 | mullidi | ⊢ ( 1 · π ) = π |
| 15 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 16 | 14 15 | oveq12i | ⊢ ( ( 1 · π ) / ( 2 · 2 ) ) = ( π / 4 ) |
| 17 | 13 16 | eqtri | ⊢ ( ( 1 / 2 ) · ( π / 2 ) ) = ( π / 4 ) |
| 18 | 17 | fveq2i | ⊢ ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) = ( sin ‘ ( π / 4 ) ) |
| 19 | 18 18 | oveq12i | ⊢ ( ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) · ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) ) = ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) |
| 20 | 19 | oveq2i | ⊢ ( 2 · ( ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) · ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) ) ) = ( 2 · ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) |
| 21 | 9 12 | recidi | ⊢ ( 2 · ( 1 / 2 ) ) = 1 |
| 22 | 21 | oveq1i | ⊢ ( ( 2 · ( 1 / 2 ) ) · ( π / 2 ) ) = ( 1 · ( π / 2 ) ) |
| 23 | 2re | ⊢ 2 ∈ ℝ | |
| 24 | 10 23 12 | redivcli | ⊢ ( π / 2 ) ∈ ℝ |
| 25 | 24 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 26 | 9 1 25 | mulassi | ⊢ ( ( 2 · ( 1 / 2 ) ) · ( π / 2 ) ) = ( 2 · ( ( 1 / 2 ) · ( π / 2 ) ) ) |
| 27 | 25 | mullidi | ⊢ ( 1 · ( π / 2 ) ) = ( π / 2 ) |
| 28 | 22 26 27 | 3eqtr3i | ⊢ ( 2 · ( ( 1 / 2 ) · ( π / 2 ) ) ) = ( π / 2 ) |
| 29 | 28 | fveq2i | ⊢ ( sin ‘ ( 2 · ( ( 1 / 2 ) · ( π / 2 ) ) ) ) = ( sin ‘ ( π / 2 ) ) |
| 30 | 1 25 | mulcli | ⊢ ( ( 1 / 2 ) · ( π / 2 ) ) ∈ ℂ |
| 31 | sin2t | ⊢ ( ( ( 1 / 2 ) · ( π / 2 ) ) ∈ ℂ → ( sin ‘ ( 2 · ( ( 1 / 2 ) · ( π / 2 ) ) ) ) = ( 2 · ( ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) · ( cos ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) ) ) ) | |
| 32 | 30 31 | ax-mp | ⊢ ( sin ‘ ( 2 · ( ( 1 / 2 ) · ( π / 2 ) ) ) ) = ( 2 · ( ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) · ( cos ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) ) ) |
| 33 | sinhalfpi | ⊢ ( sin ‘ ( π / 2 ) ) = 1 | |
| 34 | 29 32 33 | 3eqtr3i | ⊢ ( 2 · ( ( sin ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) · ( cos ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) ) ) = 1 |
| 35 | 8 20 34 | 3eqtr3i | ⊢ ( 2 · ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) = 1 |
| 36 | 35 | fveq2i | ⊢ ( √ ‘ ( 2 · ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ) = ( √ ‘ 1 ) |
| 37 | 4re | ⊢ 4 ∈ ℝ | |
| 38 | 4ne0 | ⊢ 4 ≠ 0 | |
| 39 | 10 37 38 | redivcli | ⊢ ( π / 4 ) ∈ ℝ |
| 40 | resincl | ⊢ ( ( π / 4 ) ∈ ℝ → ( sin ‘ ( π / 4 ) ) ∈ ℝ ) | |
| 41 | 39 40 | ax-mp | ⊢ ( sin ‘ ( π / 4 ) ) ∈ ℝ |
| 42 | 41 41 | remulcli | ⊢ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ∈ ℝ |
| 43 | 0le2 | ⊢ 0 ≤ 2 | |
| 44 | 41 | msqge0i | ⊢ 0 ≤ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) |
| 45 | 23 42 43 44 | sqrtmulii | ⊢ ( √ ‘ ( 2 · ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ) = ( ( √ ‘ 2 ) · ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ) |
| 46 | sqrt1 | ⊢ ( √ ‘ 1 ) = 1 | |
| 47 | 36 45 46 | 3eqtr3ri | ⊢ 1 = ( ( √ ‘ 2 ) · ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ) |
| 48 | 42 | sqrtcli | ⊢ ( 0 ≤ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) → ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ∈ ℝ ) |
| 49 | 44 48 | ax-mp | ⊢ ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ∈ ℝ |
| 50 | 49 | recni | ⊢ ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ∈ ℂ |
| 51 | sqrt2re | ⊢ ( √ ‘ 2 ) ∈ ℝ | |
| 52 | 51 | recni | ⊢ ( √ ‘ 2 ) ∈ ℂ |
| 53 | sqrt00 | ⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( ( √ ‘ 2 ) = 0 ↔ 2 = 0 ) ) | |
| 54 | 23 43 53 | mp2an | ⊢ ( ( √ ‘ 2 ) = 0 ↔ 2 = 0 ) |
| 55 | 54 | necon3bii | ⊢ ( ( √ ‘ 2 ) ≠ 0 ↔ 2 ≠ 0 ) |
| 56 | 12 55 | mpbir | ⊢ ( √ ‘ 2 ) ≠ 0 |
| 57 | 52 56 | pm3.2i | ⊢ ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) |
| 58 | divmul2 | ⊢ ( ( 1 ∈ ℂ ∧ ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ∈ ℂ ∧ ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) ) → ( ( 1 / ( √ ‘ 2 ) ) = ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ↔ 1 = ( ( √ ‘ 2 ) · ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ) ) ) | |
| 59 | 2 50 57 58 | mp3an | ⊢ ( ( 1 / ( √ ‘ 2 ) ) = ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ↔ 1 = ( ( √ ‘ 2 ) · ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) ) ) |
| 60 | 47 59 | mpbir | ⊢ ( 1 / ( √ ‘ 2 ) ) = ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) |
| 61 | 0re | ⊢ 0 ∈ ℝ | |
| 62 | pipos | ⊢ 0 < π | |
| 63 | 4pos | ⊢ 0 < 4 | |
| 64 | 10 37 62 63 | divgt0ii | ⊢ 0 < ( π / 4 ) |
| 65 | 1re | ⊢ 1 ∈ ℝ | |
| 66 | pigt2lt4 | ⊢ ( 2 < π ∧ π < 4 ) | |
| 67 | 66 | simpri | ⊢ π < 4 |
| 68 | 10 37 37 63 | ltdiv1ii | ⊢ ( π < 4 ↔ ( π / 4 ) < ( 4 / 4 ) ) |
| 69 | 67 68 | mpbi | ⊢ ( π / 4 ) < ( 4 / 4 ) |
| 70 | 37 | recni | ⊢ 4 ∈ ℂ |
| 71 | 70 38 | dividi | ⊢ ( 4 / 4 ) = 1 |
| 72 | 69 71 | breqtri | ⊢ ( π / 4 ) < 1 |
| 73 | 39 65 72 | ltleii | ⊢ ( π / 4 ) ≤ 1 |
| 74 | 0xr | ⊢ 0 ∈ ℝ* | |
| 75 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( ( π / 4 ) ∈ ( 0 (,] 1 ) ↔ ( ( π / 4 ) ∈ ℝ ∧ 0 < ( π / 4 ) ∧ ( π / 4 ) ≤ 1 ) ) ) | |
| 76 | 74 65 75 | mp2an | ⊢ ( ( π / 4 ) ∈ ( 0 (,] 1 ) ↔ ( ( π / 4 ) ∈ ℝ ∧ 0 < ( π / 4 ) ∧ ( π / 4 ) ≤ 1 ) ) |
| 77 | 39 64 73 76 | mpbir3an | ⊢ ( π / 4 ) ∈ ( 0 (,] 1 ) |
| 78 | sin01gt0 | ⊢ ( ( π / 4 ) ∈ ( 0 (,] 1 ) → 0 < ( sin ‘ ( π / 4 ) ) ) | |
| 79 | 77 78 | ax-mp | ⊢ 0 < ( sin ‘ ( π / 4 ) ) |
| 80 | 61 41 79 | ltleii | ⊢ 0 ≤ ( sin ‘ ( π / 4 ) ) |
| 81 | 41 | sqrtmsqi | ⊢ ( 0 ≤ ( sin ‘ ( π / 4 ) ) → ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) = ( sin ‘ ( π / 4 ) ) ) |
| 82 | 80 81 | ax-mp | ⊢ ( √ ‘ ( ( sin ‘ ( π / 4 ) ) · ( sin ‘ ( π / 4 ) ) ) ) = ( sin ‘ ( π / 4 ) ) |
| 83 | 60 82 | eqtr2i | ⊢ ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) |
| 84 | 60 82 | eqtri | ⊢ ( 1 / ( √ ‘ 2 ) ) = ( sin ‘ ( π / 4 ) ) |
| 85 | 17 | fveq2i | ⊢ ( cos ‘ ( ( 1 / 2 ) · ( π / 2 ) ) ) = ( cos ‘ ( π / 4 ) ) |
| 86 | 6 18 85 | 3eqtr3i | ⊢ ( sin ‘ ( π / 4 ) ) = ( cos ‘ ( π / 4 ) ) |
| 87 | 84 86 | eqtr2i | ⊢ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) |
| 88 | 83 87 | pm3.2i | ⊢ ( ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ∧ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ) |