This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine and cosine of _pi / 4 . (Contributed by Paul Chapman, 25-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincos4thpi | |- ( ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) /\ ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 2 | ax-1cn | |- 1 e. CC |
|
| 3 | 2halves | |- ( 1 e. CC -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
|
| 4 | 2 3 | ax-mp | |- ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 5 | sincosq1eq | |- ( ( ( 1 / 2 ) e. CC /\ ( 1 / 2 ) e. CC /\ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) -> ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) = ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) |
|
| 6 | 1 1 4 5 | mp3an | |- ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) = ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) |
| 7 | 6 | oveq2i | |- ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) = ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) |
| 8 | 7 | oveq2i | |- ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) = ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) |
| 9 | 2cn | |- 2 e. CC |
|
| 10 | pire | |- _pi e. RR |
|
| 11 | 10 | recni | |- _pi e. CC |
| 12 | 2ne0 | |- 2 =/= 0 |
|
| 13 | 2 9 11 9 12 12 | divmuldivi | |- ( ( 1 / 2 ) x. ( _pi / 2 ) ) = ( ( 1 x. _pi ) / ( 2 x. 2 ) ) |
| 14 | 11 | mullidi | |- ( 1 x. _pi ) = _pi |
| 15 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 16 | 14 15 | oveq12i | |- ( ( 1 x. _pi ) / ( 2 x. 2 ) ) = ( _pi / 4 ) |
| 17 | 13 16 | eqtri | |- ( ( 1 / 2 ) x. ( _pi / 2 ) ) = ( _pi / 4 ) |
| 18 | 17 | fveq2i | |- ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) = ( sin ` ( _pi / 4 ) ) |
| 19 | 18 18 | oveq12i | |- ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) = ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) |
| 20 | 19 | oveq2i | |- ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) = ( 2 x. ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) |
| 21 | 9 12 | recidi | |- ( 2 x. ( 1 / 2 ) ) = 1 |
| 22 | 21 | oveq1i | |- ( ( 2 x. ( 1 / 2 ) ) x. ( _pi / 2 ) ) = ( 1 x. ( _pi / 2 ) ) |
| 23 | 2re | |- 2 e. RR |
|
| 24 | 10 23 12 | redivcli | |- ( _pi / 2 ) e. RR |
| 25 | 24 | recni | |- ( _pi / 2 ) e. CC |
| 26 | 9 1 25 | mulassi | |- ( ( 2 x. ( 1 / 2 ) ) x. ( _pi / 2 ) ) = ( 2 x. ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) |
| 27 | 25 | mullidi | |- ( 1 x. ( _pi / 2 ) ) = ( _pi / 2 ) |
| 28 | 22 26 27 | 3eqtr3i | |- ( 2 x. ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) = ( _pi / 2 ) |
| 29 | 28 | fveq2i | |- ( sin ` ( 2 x. ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) = ( sin ` ( _pi / 2 ) ) |
| 30 | 1 25 | mulcli | |- ( ( 1 / 2 ) x. ( _pi / 2 ) ) e. CC |
| 31 | sin2t | |- ( ( ( 1 / 2 ) x. ( _pi / 2 ) ) e. CC -> ( sin ` ( 2 x. ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) = ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) ) |
|
| 32 | 30 31 | ax-mp | |- ( sin ` ( 2 x. ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) = ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) |
| 33 | sinhalfpi | |- ( sin ` ( _pi / 2 ) ) = 1 |
|
| 34 | 29 32 33 | 3eqtr3i | |- ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) = 1 |
| 35 | 8 20 34 | 3eqtr3i | |- ( 2 x. ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) = 1 |
| 36 | 35 | fveq2i | |- ( sqrt ` ( 2 x. ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) = ( sqrt ` 1 ) |
| 37 | 4re | |- 4 e. RR |
|
| 38 | 4ne0 | |- 4 =/= 0 |
|
| 39 | 10 37 38 | redivcli | |- ( _pi / 4 ) e. RR |
| 40 | resincl | |- ( ( _pi / 4 ) e. RR -> ( sin ` ( _pi / 4 ) ) e. RR ) |
|
| 41 | 39 40 | ax-mp | |- ( sin ` ( _pi / 4 ) ) e. RR |
| 42 | 41 41 | remulcli | |- ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) e. RR |
| 43 | 0le2 | |- 0 <_ 2 |
|
| 44 | 41 | msqge0i | |- 0 <_ ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) |
| 45 | 23 42 43 44 | sqrtmulii | |- ( sqrt ` ( 2 x. ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) |
| 46 | sqrt1 | |- ( sqrt ` 1 ) = 1 |
|
| 47 | 36 45 46 | 3eqtr3ri | |- 1 = ( ( sqrt ` 2 ) x. ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) |
| 48 | 42 | sqrtcli | |- ( 0 <_ ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) -> ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) e. RR ) |
| 49 | 44 48 | ax-mp | |- ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) e. RR |
| 50 | 49 | recni | |- ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) e. CC |
| 51 | sqrt2re | |- ( sqrt ` 2 ) e. RR |
|
| 52 | 51 | recni | |- ( sqrt ` 2 ) e. CC |
| 53 | sqrt00 | |- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( ( sqrt ` 2 ) = 0 <-> 2 = 0 ) ) |
|
| 54 | 23 43 53 | mp2an | |- ( ( sqrt ` 2 ) = 0 <-> 2 = 0 ) |
| 55 | 54 | necon3bii | |- ( ( sqrt ` 2 ) =/= 0 <-> 2 =/= 0 ) |
| 56 | 12 55 | mpbir | |- ( sqrt ` 2 ) =/= 0 |
| 57 | 52 56 | pm3.2i | |- ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) |
| 58 | divmul2 | |- ( ( 1 e. CC /\ ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) e. CC /\ ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) ) -> ( ( 1 / ( sqrt ` 2 ) ) = ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) <-> 1 = ( ( sqrt ` 2 ) x. ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) ) ) |
|
| 59 | 2 50 57 58 | mp3an | |- ( ( 1 / ( sqrt ` 2 ) ) = ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) <-> 1 = ( ( sqrt ` 2 ) x. ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) ) |
| 60 | 47 59 | mpbir | |- ( 1 / ( sqrt ` 2 ) ) = ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) |
| 61 | 0re | |- 0 e. RR |
|
| 62 | pipos | |- 0 < _pi |
|
| 63 | 4pos | |- 0 < 4 |
|
| 64 | 10 37 62 63 | divgt0ii | |- 0 < ( _pi / 4 ) |
| 65 | 1re | |- 1 e. RR |
|
| 66 | pigt2lt4 | |- ( 2 < _pi /\ _pi < 4 ) |
|
| 67 | 66 | simpri | |- _pi < 4 |
| 68 | 10 37 37 63 | ltdiv1ii | |- ( _pi < 4 <-> ( _pi / 4 ) < ( 4 / 4 ) ) |
| 69 | 67 68 | mpbi | |- ( _pi / 4 ) < ( 4 / 4 ) |
| 70 | 37 | recni | |- 4 e. CC |
| 71 | 70 38 | dividi | |- ( 4 / 4 ) = 1 |
| 72 | 69 71 | breqtri | |- ( _pi / 4 ) < 1 |
| 73 | 39 65 72 | ltleii | |- ( _pi / 4 ) <_ 1 |
| 74 | 0xr | |- 0 e. RR* |
|
| 75 | elioc2 | |- ( ( 0 e. RR* /\ 1 e. RR ) -> ( ( _pi / 4 ) e. ( 0 (,] 1 ) <-> ( ( _pi / 4 ) e. RR /\ 0 < ( _pi / 4 ) /\ ( _pi / 4 ) <_ 1 ) ) ) |
|
| 76 | 74 65 75 | mp2an | |- ( ( _pi / 4 ) e. ( 0 (,] 1 ) <-> ( ( _pi / 4 ) e. RR /\ 0 < ( _pi / 4 ) /\ ( _pi / 4 ) <_ 1 ) ) |
| 77 | 39 64 73 76 | mpbir3an | |- ( _pi / 4 ) e. ( 0 (,] 1 ) |
| 78 | sin01gt0 | |- ( ( _pi / 4 ) e. ( 0 (,] 1 ) -> 0 < ( sin ` ( _pi / 4 ) ) ) |
|
| 79 | 77 78 | ax-mp | |- 0 < ( sin ` ( _pi / 4 ) ) |
| 80 | 61 41 79 | ltleii | |- 0 <_ ( sin ` ( _pi / 4 ) ) |
| 81 | 41 | sqrtmsqi | |- ( 0 <_ ( sin ` ( _pi / 4 ) ) -> ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) = ( sin ` ( _pi / 4 ) ) ) |
| 82 | 80 81 | ax-mp | |- ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) = ( sin ` ( _pi / 4 ) ) |
| 83 | 60 82 | eqtr2i | |- ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) |
| 84 | 60 82 | eqtri | |- ( 1 / ( sqrt ` 2 ) ) = ( sin ` ( _pi / 4 ) ) |
| 85 | 17 | fveq2i | |- ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) = ( cos ` ( _pi / 4 ) ) |
| 86 | 6 18 85 | 3eqtr3i | |- ( sin ` ( _pi / 4 ) ) = ( cos ` ( _pi / 4 ) ) |
| 87 | 84 86 | eqtr2i | |- ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) |
| 88 | 83 87 | pm3.2i | |- ( ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) /\ ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) ) |