This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A semigroup with an identity element which is not the empty set is a monoid. Of course there could be monoids with the empty set as identity element (see, for example, the monoid of the power set of a class under union, pwmnd and pwmndid ), but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sgrpidmnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| sgrpidmnd.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | sgrpidmnd | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) ) → 𝐺 ∈ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgrpidmnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | sgrpidmnd.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | 1 3 2 | grpidval | ⊢ 0 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) |
| 5 | 4 | eqeq2i | ⊢ ( 𝑒 = 0 ↔ 𝑒 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) ) |
| 6 | eleq1w | ⊢ ( 𝑦 = 𝑒 → ( 𝑦 ∈ 𝐵 ↔ 𝑒 ∈ 𝐵 ) ) | |
| 7 | oveq1 | ⊢ ( 𝑦 = 𝑒 → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑦 = 𝑒 → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ↔ ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) ) |
| 9 | 8 | ovanraleqv | ⊢ ( 𝑦 = 𝑒 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
| 10 | 6 9 | anbi12d | ⊢ ( 𝑦 = 𝑒 → ( ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ↔ ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) ) |
| 11 | 10 | iotan0 | ⊢ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 ≠ ∅ ∧ 𝑒 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) ) → ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
| 12 | rsp | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) | |
| 13 | 11 12 | simpl2im | ⊢ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 ≠ ∅ ∧ 𝑒 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) ) → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
| 14 | 13 | 3expb | ⊢ ( ( 𝑒 ∈ 𝐵 ∧ ( 𝑒 ≠ ∅ ∧ 𝑒 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) ) ) → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
| 15 | 14 | expcom | ⊢ ( ( 𝑒 ≠ ∅ ∧ 𝑒 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) ) → ( 𝑒 ∈ 𝐵 → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) ) |
| 16 | 5 15 | sylan2b | ⊢ ( ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ( 𝑒 ∈ 𝐵 → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) ) |
| 17 | 16 | impcom | ⊢ ( ( 𝑒 ∈ 𝐵 ∧ ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) ) → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
| 18 | 17 | ralrimiv | ⊢ ( ( 𝑒 ∈ 𝐵 ∧ ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) |
| 19 | 18 | ex | ⊢ ( 𝑒 ∈ 𝐵 → ( ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
| 20 | 19 | reximia | ⊢ ( ∃ 𝑒 ∈ 𝐵 ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) |
| 21 | 20 | anim2i | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) ) → ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
| 22 | 1 3 | ismnddef | ⊢ ( 𝐺 ∈ Mnd ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
| 23 | 21 22 | sylibr | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) ) → 𝐺 ∈ Mnd ) |