This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Representation of "the unique element such that ph " with a class expression A which is not the empty set (that means that "the unique element such that ph " exists). (Contributed by AV, 30-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iotan0.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | iotan0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ( ℩ 𝑥 𝜑 ) ) → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotan0.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | pm13.18 | ⊢ ( ( 𝐴 = ( ℩ 𝑥 𝜑 ) ∧ 𝐴 ≠ ∅ ) → ( ℩ 𝑥 𝜑 ) ≠ ∅ ) | |
| 3 | 2 | expcom | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 = ( ℩ 𝑥 𝜑 ) → ( ℩ 𝑥 𝜑 ) ≠ ∅ ) ) |
| 4 | iotanul | ⊢ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ ) | |
| 5 | 4 | necon1ai | ⊢ ( ( ℩ 𝑥 𝜑 ) ≠ ∅ → ∃! 𝑥 𝜑 ) |
| 6 | 3 5 | syl6 | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 = ( ℩ 𝑥 𝜑 ) → ∃! 𝑥 𝜑 ) ) |
| 7 | 6 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ≠ ∅ → ( 𝐴 = ( ℩ 𝑥 𝜑 ) → ∃! 𝑥 𝜑 ) ) ) |
| 8 | 7 | 3imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ( ℩ 𝑥 𝜑 ) ) → ∃! 𝑥 𝜑 ) |
| 9 | eqcom | ⊢ ( 𝐴 = ( ℩ 𝑥 𝜑 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝐴 ) | |
| 10 | 1 | iota2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃! 𝑥 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 𝜑 ) = 𝐴 ) ) |
| 11 | 10 | biimprd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃! 𝑥 𝜑 ) → ( ( ℩ 𝑥 𝜑 ) = 𝐴 → 𝜓 ) ) |
| 12 | 9 11 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃! 𝑥 𝜑 ) → ( 𝐴 = ( ℩ 𝑥 𝜑 ) → 𝜓 ) ) |
| 13 | 12 | impancom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 = ( ℩ 𝑥 𝜑 ) ) → ( ∃! 𝑥 𝜑 → 𝜓 ) ) |
| 14 | 13 | 3adant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ( ℩ 𝑥 𝜑 ) ) → ( ∃! 𝑥 𝜑 → 𝜓 ) ) |
| 15 | 8 14 | mpd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ( ℩ 𝑥 𝜑 ) ) → 𝜓 ) |