This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monoid is a semigroup. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020) (Proof shortened by AV, 6-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mndsgrp | ⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Smgrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 3 | 1 2 | ismnddef | ⊢ ( 𝐺 ∈ Mnd ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ ( Base ‘ 𝐺 ) ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
| 4 | 3 | simplbi | ⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Smgrp ) |