This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of a class A is a monoid under union. (Contributed by AV, 27-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwmnd.b | ⊢ ( Base ‘ 𝑀 ) = 𝒫 𝐴 | |
| pwmnd.p | ⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥 ∪ 𝑦 ) ) | ||
| Assertion | pwmnd | ⊢ 𝑀 ∈ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwmnd.b | ⊢ ( Base ‘ 𝑀 ) = 𝒫 𝐴 | |
| 2 | pwmnd.p | ⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥 ∪ 𝑦 ) ) | |
| 3 | 1 | eleq2i | ⊢ ( 𝑎 ∈ ( Base ‘ 𝑀 ) ↔ 𝑎 ∈ 𝒫 𝐴 ) |
| 4 | 1 | eleq2i | ⊢ ( 𝑏 ∈ ( Base ‘ 𝑀 ) ↔ 𝑏 ∈ 𝒫 𝐴 ) |
| 5 | pwuncl | ⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝑎 ∪ 𝑏 ) ∈ 𝒫 𝐴 ) | |
| 6 | 1 2 | pwmndgplus | ⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑎 ∪ 𝑏 ) ) |
| 7 | 1 | a1i | ⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( Base ‘ 𝑀 ) = 𝒫 𝐴 ) |
| 8 | 5 6 7 | 3eltr4d | ⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ) |
| 9 | 1 | eleq2i | ⊢ ( 𝑐 ∈ ( Base ‘ 𝑀 ) ↔ 𝑐 ∈ 𝒫 𝐴 ) |
| 10 | unass | ⊢ ( ( 𝑎 ∪ 𝑏 ) ∪ 𝑐 ) = ( 𝑎 ∪ ( 𝑏 ∪ 𝑐 ) ) | |
| 11 | 6 | adantr | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑎 ∪ 𝑏 ) ) |
| 12 | 11 | oveq1d | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝑎 ∪ 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
| 13 | 1 2 | pwmndgplus | ⊢ ( ( ( 𝑎 ∪ 𝑏 ) ∈ 𝒫 𝐴 ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ∪ 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝑎 ∪ 𝑏 ) ∪ 𝑐 ) ) |
| 14 | 5 13 | sylan | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ∪ 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝑎 ∪ 𝑏 ) ∪ 𝑐 ) ) |
| 15 | 12 14 | eqtrd | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝑎 ∪ 𝑏 ) ∪ 𝑐 ) ) |
| 16 | 1 2 | pwmndgplus | ⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑏 ∪ 𝑐 ) ) |
| 17 | 16 | adantll | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑏 ∪ 𝑐 ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ∪ 𝑐 ) ) ) |
| 19 | simpll | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → 𝑎 ∈ 𝒫 𝐴 ) | |
| 20 | pwuncl | ⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑏 ∪ 𝑐 ) ∈ 𝒫 𝐴 ) | |
| 21 | 20 | adantll | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑏 ∪ 𝑐 ) ∈ 𝒫 𝐴 ) |
| 22 | 19 21 | jca | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝑏 ∪ 𝑐 ) ∈ 𝒫 𝐴 ) ) |
| 23 | 1 2 | pwmndgplus | ⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝑏 ∪ 𝑐 ) ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ∪ 𝑐 ) ) = ( 𝑎 ∪ ( 𝑏 ∪ 𝑐 ) ) ) |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ∪ 𝑐 ) ) = ( 𝑎 ∪ ( 𝑏 ∪ 𝑐 ) ) ) |
| 25 | 18 24 | eqtrd | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝑎 ∪ ( 𝑏 ∪ 𝑐 ) ) ) |
| 26 | 10 15 25 | 3eqtr4a | ⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
| 27 | 26 | ex | ⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝑐 ∈ 𝒫 𝐴 → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 28 | 9 27 | biimtrid | ⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝑐 ∈ ( Base ‘ 𝑀 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 29 | 28 | ralrimiv | ⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
| 30 | 8 29 | jca | ⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 31 | 3 4 30 | syl2anb | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 32 | 31 | rgen2 | ⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ∀ 𝑏 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
| 33 | 0ex | ⊢ ∅ ∈ V | |
| 34 | eleq1 | ⊢ ( 𝑒 = ∅ → ( 𝑒 ∈ ( Base ‘ 𝑀 ) ↔ ∅ ∈ ( Base ‘ 𝑀 ) ) ) | |
| 35 | oveq1 | ⊢ ( 𝑒 = ∅ → ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) ) | |
| 36 | 35 | eqeq1d | ⊢ ( 𝑒 = ∅ → ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ↔ ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ) ) |
| 37 | oveq2 | ⊢ ( 𝑒 = ∅ → ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) ) | |
| 38 | 37 | eqeq1d | ⊢ ( 𝑒 = ∅ → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ↔ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) |
| 39 | 36 38 | anbi12d | ⊢ ( 𝑒 = ∅ → ( ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ↔ ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) ) |
| 40 | 39 | ralbidv | ⊢ ( 𝑒 = ∅ → ( ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) ) |
| 41 | 34 40 | anbi12d | ⊢ ( 𝑒 = ∅ → ( ( 𝑒 ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ) ↔ ( ∅ ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) ) ) |
| 42 | 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 | |
| 43 | 42 1 | eleqtrri | ⊢ ∅ ∈ ( Base ‘ 𝑀 ) |
| 44 | 1 2 | pwmndgplus | ⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = ( ∅ ∪ 𝑎 ) ) |
| 45 | 0un | ⊢ ( ∅ ∪ 𝑎 ) = 𝑎 | |
| 46 | 44 45 | eqtrdi | ⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ) |
| 47 | 1 2 | pwmndgplus | ⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑎 ∪ ∅ ) ) |
| 48 | 47 | ancoms | ⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑎 ∪ ∅ ) ) |
| 49 | un0 | ⊢ ( 𝑎 ∪ ∅ ) = 𝑎 | |
| 50 | 48 49 | eqtrdi | ⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) |
| 51 | 46 50 | jca | ⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) |
| 52 | 42 51 | mpan | ⊢ ( 𝑎 ∈ 𝒫 𝐴 → ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) |
| 53 | 3 52 | sylbi | ⊢ ( 𝑎 ∈ ( Base ‘ 𝑀 ) → ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) |
| 54 | 53 | rgen | ⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) |
| 55 | 43 54 | pm3.2i | ⊢ ( ∅ ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) |
| 56 | 33 41 55 | ceqsexv2d | ⊢ ∃ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ) |
| 57 | df-rex | ⊢ ( ∃ 𝑒 ∈ ( Base ‘ 𝑀 ) ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ↔ ∃ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ) ) | |
| 58 | 56 57 | mpbir | ⊢ ∃ 𝑒 ∈ ( Base ‘ 𝑀 ) ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) |
| 59 | 32 58 | pm3.2i | ⊢ ( ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ∀ 𝑏 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ∧ ∃ 𝑒 ∈ ( Base ‘ 𝑀 ) ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ) |
| 60 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 61 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 62 | 60 61 | ismnd | ⊢ ( 𝑀 ∈ Mnd ↔ ( ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ∀ 𝑏 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ∧ ∃ 𝑒 ∈ ( Base ‘ 𝑀 ) ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ) ) |
| 63 | 59 62 | mpbir | ⊢ 𝑀 ∈ Mnd |