This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpidval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpidval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grpidval | ⊢ 0 = ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpidval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpidval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 6 | 5 | eleq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑒 ∈ ( Base ‘ 𝑔 ) ↔ 𝑒 ∈ 𝐵 ) ) |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
| 9 | 8 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = ( 𝑒 + 𝑥 ) ) |
| 10 | 9 | eqeq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ↔ ( 𝑒 + 𝑥 ) = 𝑥 ) ) |
| 11 | 8 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = ( 𝑥 + 𝑒 ) ) |
| 12 | 11 | eqeq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ↔ ( 𝑥 + 𝑒 ) = 𝑥 ) ) |
| 13 | 10 12 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ↔ ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) |
| 14 | 5 13 | raleqbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) |
| 15 | 6 14 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑒 ∈ ( Base ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ) ↔ ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) ) |
| 16 | 15 | iotabidv | ⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ) ) = ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) ) |
| 17 | df-0g | ⊢ 0g = ( 𝑔 ∈ V ↦ ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ) ) ) | |
| 18 | iotaex | ⊢ ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) ∈ V | |
| 19 | 16 17 18 | fvmpt | ⊢ ( 𝐺 ∈ V → ( 0g ‘ 𝐺 ) = ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) ) |
| 20 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( 0g ‘ 𝐺 ) = ∅ ) | |
| 21 | euex | ⊢ ( ∃! 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) → ∃ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) | |
| 22 | n0i | ⊢ ( 𝑒 ∈ 𝐵 → ¬ 𝐵 = ∅ ) | |
| 23 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) | |
| 24 | 1 23 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 𝐵 = ∅ ) |
| 25 | 22 24 | nsyl2 | ⊢ ( 𝑒 ∈ 𝐵 → 𝐺 ∈ V ) |
| 26 | 25 | adantr | ⊢ ( ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) → 𝐺 ∈ V ) |
| 27 | 26 | exlimiv | ⊢ ( ∃ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) → 𝐺 ∈ V ) |
| 28 | 21 27 | syl | ⊢ ( ∃! 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) → 𝐺 ∈ V ) |
| 29 | iotanul | ⊢ ( ¬ ∃! 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) → ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) = ∅ ) | |
| 30 | 28 29 | nsyl5 | ⊢ ( ¬ 𝐺 ∈ V → ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) = ∅ ) |
| 31 | 20 30 | eqtr4d | ⊢ ( ¬ 𝐺 ∈ V → ( 0g ‘ 𝐺 ) = ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) ) |
| 32 | 19 31 | pm2.61i | ⊢ ( 0g ‘ 𝐺 ) = ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) |
| 33 | 3 32 | eqtri | ⊢ 0 = ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) |