This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the monoid of the power set of a class A under union is the empty set. (Contributed by AV, 27-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwmnd.b | ⊢ ( Base ‘ 𝑀 ) = 𝒫 𝐴 | |
| pwmnd.p | ⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥 ∪ 𝑦 ) ) | ||
| Assertion | pwmndid | ⊢ ( 0g ‘ 𝑀 ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwmnd.b | ⊢ ( Base ‘ 𝑀 ) = 𝒫 𝐴 | |
| 2 | pwmnd.p | ⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥 ∪ 𝑦 ) ) | |
| 3 | 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 | |
| 4 | 1 | eqcomi | ⊢ 𝒫 𝐴 = ( Base ‘ 𝑀 ) |
| 5 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 7 | id | ⊢ ( ∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴 ) | |
| 8 | 1 2 | pwmndgplus | ⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴 ) → ( ∅ ( +g ‘ 𝑀 ) 𝑧 ) = ( ∅ ∪ 𝑧 ) ) |
| 9 | 0un | ⊢ ( ∅ ∪ 𝑧 ) = 𝑧 | |
| 10 | 8 9 | eqtrdi | ⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴 ) → ( ∅ ( +g ‘ 𝑀 ) 𝑧 ) = 𝑧 ) |
| 11 | 1 2 | pwmndgplus | ⊢ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴 ) → ( 𝑧 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑧 ∪ ∅ ) ) |
| 12 | 11 | ancoms | ⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴 ) → ( 𝑧 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑧 ∪ ∅ ) ) |
| 13 | un0 | ⊢ ( 𝑧 ∪ ∅ ) = 𝑧 | |
| 14 | 12 13 | eqtrdi | ⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴 ) → ( 𝑧 ( +g ‘ 𝑀 ) ∅ ) = 𝑧 ) |
| 15 | 4 5 6 7 10 14 | ismgmid2 | ⊢ ( ∅ ∈ 𝒫 𝐴 → ∅ = ( 0g ‘ 𝑀 ) ) |
| 16 | 15 | eqcomd | ⊢ ( ∅ ∈ 𝒫 𝐴 → ( 0g ‘ 𝑀 ) = ∅ ) |
| 17 | 3 16 | ax-mp | ⊢ ( 0g ‘ 𝑀 ) = ∅ |