This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgmppw | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 σ ( 𝑃 ↑ 𝑁 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑃 ↑𝑐 𝐴 ) ↑ 𝑘 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 2 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) | |
| 3 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
| 5 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 6 | 4 5 | nnexpcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) |
| 7 | sgmval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) → ( 𝐴 σ ( 𝑃 ↑ 𝑁 ) ) = Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ( 𝑛 ↑𝑐 𝐴 ) ) | |
| 8 | 1 6 7 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 σ ( 𝑃 ↑ 𝑁 ) ) = Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ( 𝑛 ↑𝑐 𝐴 ) ) |
| 9 | oveq1 | ⊢ ( 𝑛 = ( 𝑃 ↑ 𝑘 ) → ( 𝑛 ↑𝑐 𝐴 ) = ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) ) | |
| 10 | fzfid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 0 ... 𝑁 ) ∈ Fin ) | |
| 11 | eqid | ⊢ ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) = ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) | |
| 12 | 11 | dvdsppwf1o | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ) |
| 13 | 2 5 12 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ) |
| 14 | oveq2 | ⊢ ( 𝑖 = 𝑘 → ( 𝑃 ↑ 𝑖 ) = ( 𝑃 ↑ 𝑘 ) ) | |
| 15 | ovex | ⊢ ( 𝑃 ↑ 𝑘 ) ∈ V | |
| 16 | 14 11 15 | fvmpt | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) ‘ 𝑘 ) = ( 𝑃 ↑ 𝑘 ) ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) ‘ 𝑘 ) = ( 𝑃 ↑ 𝑘 ) ) |
| 18 | elrabi | ⊢ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } → 𝑛 ∈ ℕ ) | |
| 19 | 18 | nncnd | ⊢ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } → 𝑛 ∈ ℂ ) |
| 20 | cxpcl | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑛 ↑𝑐 𝐴 ) ∈ ℂ ) | |
| 21 | 19 1 20 | syl2anr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ) → ( 𝑛 ↑𝑐 𝐴 ) ∈ ℂ ) |
| 22 | 9 10 13 17 21 | fsumf1o | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ( 𝑛 ↑𝑐 𝐴 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) ) |
| 23 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) | |
| 24 | 23 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 25 | 24 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 26 | 1 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 27 | 25 26 | mulcomd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑘 · 𝐴 ) = ( 𝐴 · 𝑘 ) ) |
| 28 | 27 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ↑𝑐 ( 𝑘 · 𝐴 ) ) = ( 𝑃 ↑𝑐 ( 𝐴 · 𝑘 ) ) ) |
| 29 | 4 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑃 ∈ ℕ ) |
| 30 | 29 | nnrpd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑃 ∈ ℝ+ ) |
| 31 | 24 | nn0red | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℝ ) |
| 32 | 30 31 26 | cxpmuld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ↑𝑐 ( 𝑘 · 𝐴 ) ) = ( ( 𝑃 ↑𝑐 𝑘 ) ↑𝑐 𝐴 ) ) |
| 33 | 29 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑃 ∈ ℂ ) |
| 34 | cxpexp | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑𝑐 𝑘 ) = ( 𝑃 ↑ 𝑘 ) ) | |
| 35 | 33 24 34 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ↑𝑐 𝑘 ) = ( 𝑃 ↑ 𝑘 ) ) |
| 36 | 35 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑃 ↑𝑐 𝑘 ) ↑𝑐 𝐴 ) = ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) ) |
| 37 | 32 36 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ↑𝑐 ( 𝑘 · 𝐴 ) ) = ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) ) |
| 38 | 33 26 24 | cxpmul2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ↑𝑐 ( 𝐴 · 𝑘 ) ) = ( ( 𝑃 ↑𝑐 𝐴 ) ↑ 𝑘 ) ) |
| 39 | 28 37 38 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) = ( ( 𝑃 ↑𝑐 𝐴 ) ↑ 𝑘 ) ) |
| 40 | 39 | sumeq2dv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑃 ↑𝑐 𝐴 ) ↑ 𝑘 ) ) |
| 41 | 8 22 40 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 σ ( 𝑃 ↑ 𝑁 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑃 ↑𝑐 𝐴 ) ↑ 𝑘 ) ) |