This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpcxpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| rpcxpcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| cxpmuld.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | cxpmuld | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcxpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| 2 | rpcxpcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | cxpmuld.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | cxpmul | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) ) |