This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014) (Revised by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgmval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 σ 𝐵 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑𝑐 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) → 𝑛 = 𝐵 ) | |
| 2 | 1 | breq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) → ( 𝑝 ∥ 𝑛 ↔ 𝑝 ∥ 𝐵 ) ) |
| 3 | 2 | rabbidv | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } = { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) |
| 4 | simpll | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ) → 𝑥 = 𝐴 ) | |
| 5 | 4 | oveq2d | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ) → ( 𝑘 ↑𝑐 𝑥 ) = ( 𝑘 ↑𝑐 𝐴 ) ) |
| 6 | 3 5 | sumeq12dv | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑𝑐 𝐴 ) ) |
| 7 | df-sgm | ⊢ σ = ( 𝑥 ∈ ℂ , 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ) | |
| 8 | sumex | ⊢ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑𝑐 𝐴 ) ∈ V | |
| 9 | 6 7 8 | ovmpoa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 σ 𝐵 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑𝑐 𝐴 ) ) |