This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime power P ^ K has K + 1 divisors. (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0sgmppw | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 0 σ ( 𝑃 ↑ 𝐾 ) ) = ( 𝐾 + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 2 | nnexpcl | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) |
| 4 | 0sgm | ⊢ ( ( 𝑃 ↑ 𝐾 ) ∈ ℕ → ( 0 σ ( 𝑃 ↑ 𝐾 ) ) = ( ♯ ‘ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐾 ) } ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 0 σ ( 𝑃 ↑ 𝐾 ) ) = ( ♯ ‘ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐾 ) } ) ) |
| 6 | fzfid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 0 ... 𝐾 ) ∈ Fin ) | |
| 7 | eqid | ⊢ ( 𝑛 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑃 ↑ 𝑛 ) ) = ( 𝑛 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑃 ↑ 𝑛 ) ) | |
| 8 | 7 | dvdsppwf1o | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑛 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑃 ↑ 𝑛 ) ) : ( 0 ... 𝐾 ) –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐾 ) } ) |
| 9 | 6 8 | hasheqf1od | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( ♯ ‘ ( 0 ... 𝐾 ) ) = ( ♯ ‘ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐾 ) } ) ) |
| 10 | 5 9 | eqtr4d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 0 σ ( 𝑃 ↑ 𝐾 ) ) = ( ♯ ‘ ( 0 ... 𝐾 ) ) ) |
| 11 | simpr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) | |
| 12 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 13 | 11 12 | eleqtrdi | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ( ℤ≥ ‘ 0 ) ) |
| 14 | hashfz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 0 ) → ( ♯ ‘ ( 0 ... 𝐾 ) ) = ( ( 𝐾 − 0 ) + 1 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( ♯ ‘ ( 0 ... 𝐾 ) ) = ( ( 𝐾 − 0 ) + 1 ) ) |
| 16 | nn0cn | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℂ ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℂ ) |
| 18 | 17 | subid1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 − 0 ) = 𝐾 ) |
| 19 | 18 | oveq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐾 − 0 ) + 1 ) = ( 𝐾 + 1 ) ) |
| 20 | 10 15 19 | 3eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 0 σ ( 𝑃 ↑ 𝐾 ) ) = ( 𝐾 + 1 ) ) |