This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝐵 ∈ ℕ0 ↔ ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ) | |
| 2 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 3 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
| 4 | 0cxp | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( 𝐵 ∈ ℕ → ( 0 ↑𝑐 𝐵 ) = 0 ) |
| 6 | 0exp | ⊢ ( 𝐵 ∈ ℕ → ( 0 ↑ 𝐵 ) = 0 ) | |
| 7 | 5 6 | eqtr4d | ⊢ ( 𝐵 ∈ ℕ → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑ 𝐵 ) ) |
| 8 | 0cn | ⊢ 0 ∈ ℂ | |
| 9 | cxpval | ⊢ ( ( 0 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 0 ↑𝑐 0 ) = if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ‘ ( 0 · ( log ‘ 0 ) ) ) ) ) | |
| 10 | 8 8 9 | mp2an | ⊢ ( 0 ↑𝑐 0 ) = if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ‘ ( 0 · ( log ‘ 0 ) ) ) ) |
| 11 | eqid | ⊢ 0 = 0 | |
| 12 | 11 | iftruei | ⊢ if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ‘ ( 0 · ( log ‘ 0 ) ) ) ) = if ( 0 = 0 , 1 , 0 ) |
| 13 | 11 | iftruei | ⊢ if ( 0 = 0 , 1 , 0 ) = 1 |
| 14 | 10 12 13 | 3eqtri | ⊢ ( 0 ↑𝑐 0 ) = 1 |
| 15 | 0exp0e1 | ⊢ ( 0 ↑ 0 ) = 1 | |
| 16 | 14 15 | eqtr4i | ⊢ ( 0 ↑𝑐 0 ) = ( 0 ↑ 0 ) |
| 17 | oveq2 | ⊢ ( 𝐵 = 0 → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 0 ) ) | |
| 18 | oveq2 | ⊢ ( 𝐵 = 0 → ( 0 ↑ 𝐵 ) = ( 0 ↑ 0 ) ) | |
| 19 | 16 17 18 | 3eqtr4a | ⊢ ( 𝐵 = 0 → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑ 𝐵 ) ) |
| 20 | 7 19 | jaoi | ⊢ ( ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑ 𝐵 ) ) |
| 21 | 1 20 | sylbi | ⊢ ( 𝐵 ∈ ℕ0 → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑ 𝐵 ) ) |
| 22 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) ) | |
| 23 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 𝐵 ) = ( 0 ↑ 𝐵 ) ) | |
| 24 | 22 23 | eqeq12d | ⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ↔ ( 0 ↑𝑐 𝐵 ) = ( 0 ↑ 𝐵 ) ) ) |
| 25 | 21 24 | syl5ibrcom | ⊢ ( 𝐵 ∈ ℕ0 → ( 𝐴 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) ) |
| 27 | 26 | imp | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
| 28 | nn0z | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) | |
| 29 | cxpexpz | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) | |
| 30 | 29 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
| 31 | 28 30 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
| 32 | 31 | an32s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
| 33 | 27 32 | pm2.61dane | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |