This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of Gleason p. 180. (Contributed by Mario Carneiro, 15-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | caucvgb.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | caucvgb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgb.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | eldm2g | ⊢ ( 𝐹 ∈ dom ⇝ → ( 𝐹 ∈ dom ⇝ ↔ ∃ 𝑚 〈 𝐹 , 𝑚 〉 ∈ ⇝ ) ) | |
| 3 | 2 | ibi | ⊢ ( 𝐹 ∈ dom ⇝ → ∃ 𝑚 〈 𝐹 , 𝑚 〉 ∈ ⇝ ) |
| 4 | df-br | ⊢ ( 𝐹 ⇝ 𝑚 ↔ 〈 𝐹 , 𝑚 〉 ∈ ⇝ ) | |
| 5 | simpll | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ 𝐹 ⇝ 𝑚 ) → 𝑀 ∈ ℤ ) | |
| 6 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 7 | 6 | a1i | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ 𝐹 ⇝ 𝑚 ) → 1 ∈ ℝ+ ) |
| 8 | eqidd | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ 𝐹 ⇝ 𝑚 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 9 | simpr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ 𝐹 ⇝ 𝑚 ) → 𝐹 ⇝ 𝑚 ) | |
| 10 | 1 5 7 8 9 | climi | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ 𝐹 ⇝ 𝑚 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑚 ) ) < 1 ) ) |
| 11 | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑚 ) ) < 1 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 12 | 11 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑚 ) ) < 1 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 13 | 12 | reximi | ⊢ ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑚 ) ) < 1 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 14 | 10 13 | syl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ 𝐹 ⇝ 𝑚 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 15 | 14 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ⇝ 𝑚 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
| 16 | 4 15 | biimtrrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 〈 𝐹 , 𝑚 〉 ∈ ⇝ → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
| 17 | 16 | exlimdv | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( ∃ 𝑚 〈 𝐹 , 𝑚 〉 ∈ ⇝ → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
| 18 | 3 17 | syl5 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ dom ⇝ → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
| 19 | fveq2 | ⊢ ( 𝑗 = 𝑛 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑛 ) ) | |
| 20 | 19 | raleqdv | ⊢ ( 𝑗 = 𝑛 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
| 21 | 20 | cbvrexvw | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 22 | 21 | a1i | ⊢ ( 𝑥 = 1 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
| 23 | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 24 | 23 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 25 | 24 | reximi | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 26 | 25 | ralimi | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 27 | 6 | a1i | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → 1 ∈ ℝ+ ) |
| 28 | 22 26 27 | rspcdva | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 29 | 28 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
| 30 | eluzelz | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) | |
| 31 | 30 1 | eleq2s | ⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
| 32 | eqid | ⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) | |
| 33 | 32 | climcau | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 34 | 31 33 | sylan | ⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝐹 ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 35 | 32 | r19.29uz | ⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 36 | 35 | ex | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 37 | 36 | ralimdv | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 38 | 34 37 | mpan9 | ⊢ ( ( ( 𝑛 ∈ 𝑍 ∧ 𝐹 ∈ dom ⇝ ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 39 | 38 | an32s | ⊢ ( ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ 𝐹 ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 40 | 39 | adantll | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) ∧ 𝐹 ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 41 | simplrr | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 42 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 43 | 42 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) ) |
| 44 | 43 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 45 | 41 44 | sylan | ⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 46 | simpr | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) | |
| 47 | 46 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 48 | 42 | fvoveq1d | ⊢ ( 𝑘 = 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 49 | 48 | breq1d | ⊢ ( 𝑘 = 𝑚 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 50 | 49 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 51 | 47 50 | sylib | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 52 | 51 | reximi | ⊢ ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 53 | 52 | ralimi | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 54 | 53 | adantl | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 55 | fveq2 | ⊢ ( 𝑗 = 𝑖 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑖 ) ) | |
| 56 | fveq2 | ⊢ ( 𝑗 = 𝑖 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑖 ) ) | |
| 57 | 56 | oveq2d | ⊢ ( 𝑗 = 𝑖 → ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) |
| 58 | 57 | fveq2d | ⊢ ( 𝑗 = 𝑖 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 59 | 58 | breq1d | ⊢ ( 𝑗 = 𝑖 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ) |
| 60 | 55 59 | raleqbidv | ⊢ ( 𝑗 = 𝑖 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ) |
| 61 | 60 | cbvrexvw | ⊢ ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ∃ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) |
| 62 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑦 ) ) | |
| 63 | 62 | rexralbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ↔ ∃ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑦 ) ) |
| 64 | 61 63 | bitrid | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ∃ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑦 ) ) |
| 65 | 64 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑦 ) |
| 66 | 54 65 | sylib | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑖 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑦 ) |
| 67 | simpll | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) → 𝐹 ∈ 𝑉 ) | |
| 68 | 32 45 66 67 | caucvg | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) → 𝐹 ∈ dom ⇝ ) |
| 69 | 68 | adantlll | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) → 𝐹 ∈ dom ⇝ ) |
| 70 | 40 69 | impbida | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 71 | 1 32 | cau4 | ⊢ ( 𝑛 ∈ 𝑍 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 72 | 71 | ad2antrl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 73 | 70 72 | bitr4d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 74 | 73 | rexlimdvaa | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) ) |
| 75 | 18 29 74 | pm5.21ndd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |