This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shftuz | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) } = ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) } = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) } | |
| 2 | simp2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝑥 ∈ ℂ ) | |
| 3 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 5 | 2 4 | npcand | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) |
| 6 | eluzadd | ⊢ ( ( ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) ) |
| 9 | 5 8 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝑥 ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) ) |
| 10 | 9 | 3expib | ⊢ ( 𝐴 ∈ ℤ → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝑥 ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝑥 ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) ) ) |
| 12 | eluzelcn | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) → 𝑥 ∈ ℂ ) | |
| 13 | 12 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) → 𝑥 ∈ ℂ ) ) |
| 14 | eluzsub | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) ) → ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) | |
| 15 | 14 | 3expia | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) → ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
| 16 | 15 | ancoms | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) → ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
| 17 | 13 16 | jcad | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) → ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) ) ) |
| 18 | 11 17 | impbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) ↔ 𝑥 ∈ ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) ) ) |
| 19 | 18 | eqabcdv | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) } = ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) ) |
| 20 | 1 19 | eqtrid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ ( ℤ≥ ‘ 𝐵 ) } = ( ℤ≥ ‘ ( 𝐵 + 𝐴 ) ) ) |