This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqfveq2.1 | ⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| seqfveq2.2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) | ||
| seqfeq2.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | ||
| Assertion | seqfeq2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) = seq 𝐾 ( + , 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfveq2.1 | ⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | seqfveq2.2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) | |
| 3 | seqfeq2.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 4 | eluzel2 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 5 | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | 1 4 5 | 3syl | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 7 | uzss | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | fnssres | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ∧ ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) Fn ( ℤ≥ ‘ 𝐾 ) ) | |
| 10 | 6 8 9 | syl2anc | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) Fn ( ℤ≥ ‘ 𝐾 ) ) |
| 11 | eluzelz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐾 ∈ ℤ ) | |
| 12 | seqfn | ⊢ ( 𝐾 ∈ ℤ → seq 𝐾 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 𝐾 ) ) | |
| 13 | 1 11 12 | 3syl | ⊢ ( 𝜑 → seq 𝐾 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 𝐾 ) ) |
| 14 | fvres | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) |
| 16 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 17 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 19 | elfzuz | ⊢ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) | |
| 20 | 19 3 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 21 | 20 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 22 | 16 17 18 21 | seqfveq2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) |
| 23 | 15 22 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) |
| 24 | 10 13 23 | eqfnfvd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) = seq 𝐾 ( + , 𝐺 ) ) |