This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcaopr2.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqcaopr2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑄 𝑦 ) ∈ 𝑆 ) | ||
| seqcaopr2.3 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ) → ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) | ||
| seqcaopr2.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqcaopr2.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | ||
| seqcaopr2.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) | ||
| seqcaopr2.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | seqcaopr2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcaopr2.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqcaopr2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑄 𝑦 ) ∈ 𝑆 ) | |
| 3 | seqcaopr2.3 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ) → ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) | |
| 4 | seqcaopr2.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | seqcaopr2.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | |
| 6 | seqcaopr2.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) | |
| 7 | seqcaopr2.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) | |
| 8 | elfzouz | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 | elfzouz2 | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 12 | fzss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 14 | 13 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 15 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
| 17 | fveq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑘 = 𝑥 → ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 19 | 18 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
| 20 | 16 19 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
| 21 | 14 20 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
| 22 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 23 | 9 21 22 | seqcl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ 𝑆 ) |
| 24 | fzofzp1 | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 25 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) |
| 27 | 26 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 28 | 15 24 27 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 29 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
| 30 | fveq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 31 | 30 | eleq1d | ⊢ ( 𝑘 = 𝑥 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 32 | 31 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 33 | 29 32 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 34 | 33 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 35 | 14 34 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 36 | 9 35 22 | seqcl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ) |
| 37 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 38 | 37 | eleq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) |
| 39 | 38 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 40 | 29 24 39 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 41 | 3 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 42 | 41 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 43 | 42 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 45 | oveq1 | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( 𝑥 𝑄 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) ) | |
| 46 | 45 | oveq1d | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) ) |
| 47 | oveq1 | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( 𝑥 + 𝑦 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) ) | |
| 48 | 47 | oveq1d | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 49 | 46 48 | eqeq12d | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
| 50 | 49 | 2ralbidv | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
| 51 | oveq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( 𝑦 𝑄 𝑤 ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) | |
| 52 | 51 | oveq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) ) |
| 53 | oveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 54 | 53 | oveq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 55 | 52 54 | eqeq12d | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
| 56 | 55 | 2ralbidv | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
| 57 | 50 56 | rspc2va | ⊢ ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 58 | 36 40 44 57 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
| 59 | oveq2 | ⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) | |
| 60 | 59 | oveq1d | ⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) ) |
| 61 | oveq1 | ⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( 𝑧 + 𝑤 ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) | |
| 62 | 61 | oveq2d | ⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) ) |
| 63 | 60 62 | eqeq12d | ⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) ) ) |
| 64 | oveq2 | ⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 65 | 64 | oveq2d | ⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 66 | oveq2 | ⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 67 | 66 | oveq2d | ⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 68 | 65 67 | eqeq12d | ⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 69 | 63 68 | rspc2va | ⊢ ( ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ∧ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 70 | 23 28 58 69 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 71 | 1 2 4 5 6 7 70 | seqcaopr3 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |