This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcaopr.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqcaopr.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | ||
| seqcaopr.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| seqcaopr.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqcaopr.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | ||
| seqcaopr.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) | ||
| seqcaopr.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | seqcaopr | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcaopr.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqcaopr.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | |
| 3 | seqcaopr.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 4 | seqcaopr.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | seqcaopr.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | |
| 6 | seqcaopr.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) | |
| 7 | seqcaopr.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ) | |
| 8 | 1 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝑆 ) |
| 9 | simpl | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → 𝜑 ) | |
| 10 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → 𝑐 ∈ 𝑆 ) | |
| 11 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → 𝑏 ∈ 𝑆 ) | |
| 12 | 2 | caovcomg | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑐 + 𝑏 ) = ( 𝑏 + 𝑐 ) ) |
| 13 | 9 10 11 12 | syl12anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( 𝑐 + 𝑏 ) = ( 𝑏 + 𝑐 ) ) |
| 14 | 13 | oveq1d | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑐 + 𝑏 ) + 𝑑 ) = ( ( 𝑏 + 𝑐 ) + 𝑑 ) ) |
| 15 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → 𝑑 ∈ 𝑆 ) | |
| 16 | 3 | caovassg | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ( ( 𝑐 + 𝑏 ) + 𝑑 ) = ( 𝑐 + ( 𝑏 + 𝑑 ) ) ) |
| 17 | 9 10 11 15 16 | syl13anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑐 + 𝑏 ) + 𝑑 ) = ( 𝑐 + ( 𝑏 + 𝑑 ) ) ) |
| 18 | 3 | caovassg | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ( ( 𝑏 + 𝑐 ) + 𝑑 ) = ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) |
| 19 | 9 11 10 15 18 | syl13anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑏 + 𝑐 ) + 𝑑 ) = ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) |
| 20 | 14 17 19 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( 𝑐 + ( 𝑏 + 𝑑 ) ) = ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( 𝑎 + ( 𝑐 + ( 𝑏 + 𝑑 ) ) ) = ( 𝑎 + ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) ) |
| 22 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → 𝑎 ∈ 𝑆 ) | |
| 23 | 1 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ( 𝑏 + 𝑑 ) ∈ 𝑆 ) |
| 24 | 9 11 15 23 | syl12anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( 𝑏 + 𝑑 ) ∈ 𝑆 ) |
| 25 | 3 | caovassg | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ∧ ( 𝑏 + 𝑑 ) ∈ 𝑆 ) ) → ( ( 𝑎 + 𝑐 ) + ( 𝑏 + 𝑑 ) ) = ( 𝑎 + ( 𝑐 + ( 𝑏 + 𝑑 ) ) ) ) |
| 26 | 9 22 10 24 25 | syl13anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑎 + 𝑐 ) + ( 𝑏 + 𝑑 ) ) = ( 𝑎 + ( 𝑐 + ( 𝑏 + 𝑑 ) ) ) ) |
| 27 | 1 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ( 𝑐 + 𝑑 ) ∈ 𝑆 ) |
| 28 | 27 | adantrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( 𝑐 + 𝑑 ) ∈ 𝑆 ) |
| 29 | 3 | caovassg | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ ( 𝑐 + 𝑑 ) ∈ 𝑆 ) ) → ( ( 𝑎 + 𝑏 ) + ( 𝑐 + 𝑑 ) ) = ( 𝑎 + ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) ) |
| 30 | 9 22 11 28 29 | syl13anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑎 + 𝑏 ) + ( 𝑐 + 𝑑 ) ) = ( 𝑎 + ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) ) |
| 31 | 21 26 30 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑎 + 𝑐 ) + ( 𝑏 + 𝑑 ) ) = ( ( 𝑎 + 𝑏 ) + ( 𝑐 + 𝑑 ) ) ) |
| 32 | 8 8 31 4 5 6 7 | seqcaopr2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |