This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of a valuation S of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sategoelfvb.s | ⊢ 𝐸 = ( 𝑀 Sat∈ ( 𝐴 ∈𝑔 𝐵 ) ) | |
| Assertion | sategoelfvb | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝑆 ∈ 𝐸 ↔ ( 𝑆 ∈ ( 𝑀 ↑m ω ) ∧ ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sategoelfvb.s | ⊢ 𝐸 = ( 𝑀 Sat∈ ( 𝐴 ∈𝑔 𝐵 ) ) | |
| 2 | ovexd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈𝑔 𝐵 ) ∈ V ) | |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐴 ∈ ω ) | |
| 4 | opeq1 | ⊢ ( 𝑎 = 𝐴 → 〈 𝑎 , 𝑏 〉 = 〈 𝐴 , 𝑏 〉 ) | |
| 5 | 4 | opeq2d | ⊢ ( 𝑎 = 𝐴 → 〈 ∅ , 〈 𝑎 , 𝑏 〉 〉 = 〈 ∅ , 〈 𝐴 , 𝑏 〉 〉 ) |
| 6 | 5 | eqeq2d | ⊢ ( 𝑎 = 𝐴 → ( 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝑎 , 𝑏 〉 〉 ↔ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝐴 , 𝑏 〉 〉 ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑏 ∈ ω 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝑎 , 𝑏 〉 〉 ↔ ∃ 𝑏 ∈ ω 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝐴 , 𝑏 〉 〉 ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑎 = 𝐴 ) → ( ∃ 𝑏 ∈ ω 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝑎 , 𝑏 〉 〉 ↔ ∃ 𝑏 ∈ ω 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝐴 , 𝑏 〉 〉 ) ) |
| 9 | simpr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐵 ∈ ω ) | |
| 10 | opeq2 | ⊢ ( 𝑏 = 𝐵 → 〈 𝐴 , 𝑏 〉 = 〈 𝐴 , 𝐵 〉 ) | |
| 11 | 10 | opeq2d | ⊢ ( 𝑏 = 𝐵 → 〈 ∅ , 〈 𝐴 , 𝑏 〉 〉 = 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) |
| 12 | 11 | eqeq2d | ⊢ ( 𝑏 = 𝐵 → ( 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝐴 , 𝑏 〉 〉 ↔ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑏 = 𝐵 ) → ( 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝐴 , 𝑏 〉 〉 ↔ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) ) |
| 14 | eqidd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) | |
| 15 | 9 13 14 | rspcedvd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ∃ 𝑏 ∈ ω 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝐴 , 𝑏 〉 〉 ) |
| 16 | 3 8 15 | rspcedvd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ∃ 𝑎 ∈ ω ∃ 𝑏 ∈ ω 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝑎 , 𝑏 〉 〉 ) |
| 17 | goel | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈𝑔 𝐵 ) = 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) | |
| 18 | goel | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑎 ∈𝑔 𝑏 ) = 〈 ∅ , 〈 𝑎 , 𝑏 〉 〉 ) | |
| 19 | 17 18 | eqeqan12d | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( 𝐴 ∈𝑔 𝐵 ) = ( 𝑎 ∈𝑔 𝑏 ) ↔ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝑎 , 𝑏 〉 〉 ) ) |
| 20 | 19 | 2rexbidva | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝐴 ∈𝑔 𝐵 ) = ( 𝑎 ∈𝑔 𝑏 ) ↔ ∃ 𝑎 ∈ ω ∃ 𝑏 ∈ ω 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 = 〈 ∅ , 〈 𝑎 , 𝑏 〉 〉 ) ) |
| 21 | 16 20 | mpbird | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ∃ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝐴 ∈𝑔 𝐵 ) = ( 𝑎 ∈𝑔 𝑏 ) ) |
| 22 | eqeq1 | ⊢ ( 𝑥 = ( 𝐴 ∈𝑔 𝐵 ) → ( 𝑥 = ( 𝑎 ∈𝑔 𝑏 ) ↔ ( 𝐴 ∈𝑔 𝐵 ) = ( 𝑎 ∈𝑔 𝑏 ) ) ) | |
| 23 | 22 | 2rexbidv | ⊢ ( 𝑥 = ( 𝐴 ∈𝑔 𝐵 ) → ( ∃ 𝑎 ∈ ω ∃ 𝑏 ∈ ω 𝑥 = ( 𝑎 ∈𝑔 𝑏 ) ↔ ∃ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝐴 ∈𝑔 𝐵 ) = ( 𝑎 ∈𝑔 𝑏 ) ) ) |
| 24 | fmla0 | ⊢ ( Fmla ‘ ∅ ) = { 𝑥 ∈ V ∣ ∃ 𝑎 ∈ ω ∃ 𝑏 ∈ ω 𝑥 = ( 𝑎 ∈𝑔 𝑏 ) } | |
| 25 | 23 24 | elrab2 | ⊢ ( ( 𝐴 ∈𝑔 𝐵 ) ∈ ( Fmla ‘ ∅ ) ↔ ( ( 𝐴 ∈𝑔 𝐵 ) ∈ V ∧ ∃ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝐴 ∈𝑔 𝐵 ) = ( 𝑎 ∈𝑔 𝑏 ) ) ) |
| 26 | 2 21 25 | sylanbrc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈𝑔 𝐵 ) ∈ ( Fmla ‘ ∅ ) ) |
| 27 | satefvfmla0 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐴 ∈𝑔 𝐵 ) ∈ ( Fmla ‘ ∅ ) ) → ( 𝑀 Sat∈ ( 𝐴 ∈𝑔 𝐵 ) ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) } ) | |
| 28 | 26 27 | sylan2 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝑀 Sat∈ ( 𝐴 ∈𝑔 𝐵 ) ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) } ) |
| 29 | 1 28 | eqtrid | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → 𝐸 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) } ) |
| 30 | 29 | eleq2d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝑆 ∈ 𝐸 ↔ 𝑆 ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) } ) ) |
| 31 | fveq1 | ⊢ ( 𝑎 = 𝑆 → ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) = ( 𝑆 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ) | |
| 32 | fveq1 | ⊢ ( 𝑎 = 𝑆 → ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) = ( 𝑆 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ) | |
| 33 | 31 32 | eleq12d | ⊢ ( 𝑎 = 𝑆 → ( ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ↔ ( 𝑆 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑆 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ) ) |
| 34 | 33 | elrab | ⊢ ( 𝑆 ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑎 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) } ↔ ( 𝑆 ∈ ( 𝑀 ↑m ω ) ∧ ( 𝑆 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑆 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ) ) |
| 35 | 30 34 | bitrdi | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝑆 ∈ 𝐸 ↔ ( 𝑆 ∈ ( 𝑀 ↑m ω ) ∧ ( 𝑆 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑆 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ) ) ) |
| 36 | 17 | fveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) = ( 2nd ‘ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) ) |
| 37 | 36 | fveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) = ( 1st ‘ ( 2nd ‘ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) ) ) |
| 38 | 0ex | ⊢ ∅ ∈ V | |
| 39 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 40 | 38 39 | op2nd | ⊢ ( 2nd ‘ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) = 〈 𝐴 , 𝐵 〉 |
| 41 | 40 | fveq2i | ⊢ ( 1st ‘ ( 2nd ‘ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) |
| 42 | op1stg | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) | |
| 43 | 41 42 | eqtrid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 1st ‘ ( 2nd ‘ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) ) = 𝐴 ) |
| 44 | 37 43 | eqtrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) = 𝐴 ) |
| 45 | 44 | fveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝑆 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) = ( 𝑆 ‘ 𝐴 ) ) |
| 46 | 36 | fveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) = ( 2nd ‘ ( 2nd ‘ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) ) ) |
| 47 | 40 | fveq2i | ⊢ ( 2nd ‘ ( 2nd ‘ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) |
| 48 | op2ndg | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) | |
| 49 | 47 48 | eqtrid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 2nd ‘ ( 2nd ‘ 〈 ∅ , 〈 𝐴 , 𝐵 〉 〉 ) ) = 𝐵 ) |
| 50 | 46 49 | eqtrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) = 𝐵 ) |
| 51 | 50 | fveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝑆 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) = ( 𝑆 ‘ 𝐵 ) ) |
| 52 | 45 51 | eleq12d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝑆 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑆 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ↔ ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) ) |
| 53 | 52 | adantl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝑆 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑆 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ↔ ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) ) |
| 54 | 53 | anbi2d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝑆 ∈ ( 𝑀 ↑m ω ) ∧ ( 𝑆 ‘ ( 1st ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ∈ ( 𝑆 ‘ ( 2nd ‘ ( 2nd ‘ ( 𝐴 ∈𝑔 𝐵 ) ) ) ) ) ↔ ( 𝑆 ∈ ( 𝑀 ↑m ω ) ∧ ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) ) ) |
| 55 | 35 54 | bitrd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝑆 ∈ 𝐸 ↔ ( 𝑆 ∈ ( 𝑀 ↑m ω ) ∧ ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) ) ) |