This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of a valuation S of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sategoelfvb.s | |- E = ( M SatE ( A e.g B ) ) |
|
| Assertion | sategoelfvb | |- ( ( M e. V /\ ( A e. _om /\ B e. _om ) ) -> ( S e. E <-> ( S e. ( M ^m _om ) /\ ( S ` A ) e. ( S ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sategoelfvb.s | |- E = ( M SatE ( A e.g B ) ) |
|
| 2 | ovexd | |- ( ( A e. _om /\ B e. _om ) -> ( A e.g B ) e. _V ) |
|
| 3 | simpl | |- ( ( A e. _om /\ B e. _om ) -> A e. _om ) |
|
| 4 | opeq1 | |- ( a = A -> <. a , b >. = <. A , b >. ) |
|
| 5 | 4 | opeq2d | |- ( a = A -> <. (/) , <. a , b >. >. = <. (/) , <. A , b >. >. ) |
| 6 | 5 | eqeq2d | |- ( a = A -> ( <. (/) , <. A , B >. >. = <. (/) , <. a , b >. >. <-> <. (/) , <. A , B >. >. = <. (/) , <. A , b >. >. ) ) |
| 7 | 6 | rexbidv | |- ( a = A -> ( E. b e. _om <. (/) , <. A , B >. >. = <. (/) , <. a , b >. >. <-> E. b e. _om <. (/) , <. A , B >. >. = <. (/) , <. A , b >. >. ) ) |
| 8 | 7 | adantl | |- ( ( ( A e. _om /\ B e. _om ) /\ a = A ) -> ( E. b e. _om <. (/) , <. A , B >. >. = <. (/) , <. a , b >. >. <-> E. b e. _om <. (/) , <. A , B >. >. = <. (/) , <. A , b >. >. ) ) |
| 9 | simpr | |- ( ( A e. _om /\ B e. _om ) -> B e. _om ) |
|
| 10 | opeq2 | |- ( b = B -> <. A , b >. = <. A , B >. ) |
|
| 11 | 10 | opeq2d | |- ( b = B -> <. (/) , <. A , b >. >. = <. (/) , <. A , B >. >. ) |
| 12 | 11 | eqeq2d | |- ( b = B -> ( <. (/) , <. A , B >. >. = <. (/) , <. A , b >. >. <-> <. (/) , <. A , B >. >. = <. (/) , <. A , B >. >. ) ) |
| 13 | 12 | adantl | |- ( ( ( A e. _om /\ B e. _om ) /\ b = B ) -> ( <. (/) , <. A , B >. >. = <. (/) , <. A , b >. >. <-> <. (/) , <. A , B >. >. = <. (/) , <. A , B >. >. ) ) |
| 14 | eqidd | |- ( ( A e. _om /\ B e. _om ) -> <. (/) , <. A , B >. >. = <. (/) , <. A , B >. >. ) |
|
| 15 | 9 13 14 | rspcedvd | |- ( ( A e. _om /\ B e. _om ) -> E. b e. _om <. (/) , <. A , B >. >. = <. (/) , <. A , b >. >. ) |
| 16 | 3 8 15 | rspcedvd | |- ( ( A e. _om /\ B e. _om ) -> E. a e. _om E. b e. _om <. (/) , <. A , B >. >. = <. (/) , <. a , b >. >. ) |
| 17 | goel | |- ( ( A e. _om /\ B e. _om ) -> ( A e.g B ) = <. (/) , <. A , B >. >. ) |
|
| 18 | goel | |- ( ( a e. _om /\ b e. _om ) -> ( a e.g b ) = <. (/) , <. a , b >. >. ) |
|
| 19 | 17 18 | eqeqan12d | |- ( ( ( A e. _om /\ B e. _om ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( A e.g B ) = ( a e.g b ) <-> <. (/) , <. A , B >. >. = <. (/) , <. a , b >. >. ) ) |
| 20 | 19 | 2rexbidva | |- ( ( A e. _om /\ B e. _om ) -> ( E. a e. _om E. b e. _om ( A e.g B ) = ( a e.g b ) <-> E. a e. _om E. b e. _om <. (/) , <. A , B >. >. = <. (/) , <. a , b >. >. ) ) |
| 21 | 16 20 | mpbird | |- ( ( A e. _om /\ B e. _om ) -> E. a e. _om E. b e. _om ( A e.g B ) = ( a e.g b ) ) |
| 22 | eqeq1 | |- ( x = ( A e.g B ) -> ( x = ( a e.g b ) <-> ( A e.g B ) = ( a e.g b ) ) ) |
|
| 23 | 22 | 2rexbidv | |- ( x = ( A e.g B ) -> ( E. a e. _om E. b e. _om x = ( a e.g b ) <-> E. a e. _om E. b e. _om ( A e.g B ) = ( a e.g b ) ) ) |
| 24 | fmla0 | |- ( Fmla ` (/) ) = { x e. _V | E. a e. _om E. b e. _om x = ( a e.g b ) } |
|
| 25 | 23 24 | elrab2 | |- ( ( A e.g B ) e. ( Fmla ` (/) ) <-> ( ( A e.g B ) e. _V /\ E. a e. _om E. b e. _om ( A e.g B ) = ( a e.g b ) ) ) |
| 26 | 2 21 25 | sylanbrc | |- ( ( A e. _om /\ B e. _om ) -> ( A e.g B ) e. ( Fmla ` (/) ) ) |
| 27 | satefvfmla0 | |- ( ( M e. V /\ ( A e.g B ) e. ( Fmla ` (/) ) ) -> ( M SatE ( A e.g B ) ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) } ) |
|
| 28 | 26 27 | sylan2 | |- ( ( M e. V /\ ( A e. _om /\ B e. _om ) ) -> ( M SatE ( A e.g B ) ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) } ) |
| 29 | 1 28 | eqtrid | |- ( ( M e. V /\ ( A e. _om /\ B e. _om ) ) -> E = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) } ) |
| 30 | 29 | eleq2d | |- ( ( M e. V /\ ( A e. _om /\ B e. _om ) ) -> ( S e. E <-> S e. { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) } ) ) |
| 31 | fveq1 | |- ( a = S -> ( a ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) = ( S ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) ) |
|
| 32 | fveq1 | |- ( a = S -> ( a ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) = ( S ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) ) |
|
| 33 | 31 32 | eleq12d | |- ( a = S -> ( ( a ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) <-> ( S ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( S ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) ) ) |
| 34 | 33 | elrab | |- ( S e. { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) } <-> ( S e. ( M ^m _om ) /\ ( S ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( S ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) ) ) |
| 35 | 30 34 | bitrdi | |- ( ( M e. V /\ ( A e. _om /\ B e. _om ) ) -> ( S e. E <-> ( S e. ( M ^m _om ) /\ ( S ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( S ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) ) ) ) |
| 36 | 17 | fveq2d | |- ( ( A e. _om /\ B e. _om ) -> ( 2nd ` ( A e.g B ) ) = ( 2nd ` <. (/) , <. A , B >. >. ) ) |
| 37 | 36 | fveq2d | |- ( ( A e. _om /\ B e. _om ) -> ( 1st ` ( 2nd ` ( A e.g B ) ) ) = ( 1st ` ( 2nd ` <. (/) , <. A , B >. >. ) ) ) |
| 38 | 0ex | |- (/) e. _V |
|
| 39 | opex | |- <. A , B >. e. _V |
|
| 40 | 38 39 | op2nd | |- ( 2nd ` <. (/) , <. A , B >. >. ) = <. A , B >. |
| 41 | 40 | fveq2i | |- ( 1st ` ( 2nd ` <. (/) , <. A , B >. >. ) ) = ( 1st ` <. A , B >. ) |
| 42 | op1stg | |- ( ( A e. _om /\ B e. _om ) -> ( 1st ` <. A , B >. ) = A ) |
|
| 43 | 41 42 | eqtrid | |- ( ( A e. _om /\ B e. _om ) -> ( 1st ` ( 2nd ` <. (/) , <. A , B >. >. ) ) = A ) |
| 44 | 37 43 | eqtrd | |- ( ( A e. _om /\ B e. _om ) -> ( 1st ` ( 2nd ` ( A e.g B ) ) ) = A ) |
| 45 | 44 | fveq2d | |- ( ( A e. _om /\ B e. _om ) -> ( S ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) = ( S ` A ) ) |
| 46 | 36 | fveq2d | |- ( ( A e. _om /\ B e. _om ) -> ( 2nd ` ( 2nd ` ( A e.g B ) ) ) = ( 2nd ` ( 2nd ` <. (/) , <. A , B >. >. ) ) ) |
| 47 | 40 | fveq2i | |- ( 2nd ` ( 2nd ` <. (/) , <. A , B >. >. ) ) = ( 2nd ` <. A , B >. ) |
| 48 | op2ndg | |- ( ( A e. _om /\ B e. _om ) -> ( 2nd ` <. A , B >. ) = B ) |
|
| 49 | 47 48 | eqtrid | |- ( ( A e. _om /\ B e. _om ) -> ( 2nd ` ( 2nd ` <. (/) , <. A , B >. >. ) ) = B ) |
| 50 | 46 49 | eqtrd | |- ( ( A e. _om /\ B e. _om ) -> ( 2nd ` ( 2nd ` ( A e.g B ) ) ) = B ) |
| 51 | 50 | fveq2d | |- ( ( A e. _om /\ B e. _om ) -> ( S ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) = ( S ` B ) ) |
| 52 | 45 51 | eleq12d | |- ( ( A e. _om /\ B e. _om ) -> ( ( S ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( S ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) <-> ( S ` A ) e. ( S ` B ) ) ) |
| 53 | 52 | adantl | |- ( ( M e. V /\ ( A e. _om /\ B e. _om ) ) -> ( ( S ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( S ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) <-> ( S ` A ) e. ( S ` B ) ) ) |
| 54 | 53 | anbi2d | |- ( ( M e. V /\ ( A e. _om /\ B e. _om ) ) -> ( ( S e. ( M ^m _om ) /\ ( S ` ( 1st ` ( 2nd ` ( A e.g B ) ) ) ) e. ( S ` ( 2nd ` ( 2nd ` ( A e.g B ) ) ) ) ) <-> ( S e. ( M ^m _om ) /\ ( S ` A ) e. ( S ` B ) ) ) ) |
| 55 | 35 54 | bitrd | |- ( ( M e. V /\ ( A e. _om /\ B e. _om ) ) -> ( S e. E <-> ( S e. ( M ^m _om ) /\ ( S ` A ) e. ( S ` B ) ) ) ) |