This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015) (Revised by Thierry Arnoux, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| rrxmval.d | ⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | ||
| rrxdstprj1.1 | ⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | ||
| Assertion | rrxdstprj1 | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| 2 | rrxmval.d | ⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| 3 | rrxdstprj1.1 | ⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 4 | simplll | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → 𝐼 ∈ 𝑉 ) | |
| 5 | simpr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) | |
| 6 | simplr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) | |
| 7 | simprl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ 𝑋 ) | |
| 8 | 1 7 | rrxfsupp | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 supp 0 ) ∈ Fin ) |
| 9 | simprr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ 𝑋 ) | |
| 10 | 1 9 | rrxfsupp | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 supp 0 ) ∈ Fin ) |
| 11 | unfi | ⊢ ( ( ( 𝐹 supp 0 ) ∈ Fin ∧ ( 𝐺 supp 0 ) ∈ Fin ) → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∈ Fin ) | |
| 12 | 8 10 11 | syl2anc | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∈ Fin ) |
| 13 | 1 7 | rrxsuppss | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 supp 0 ) ⊆ 𝐼 ) |
| 14 | 1 9 | rrxsuppss | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 supp 0 ) ⊆ 𝐼 ) |
| 15 | 13 14 | unssd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐼 ) |
| 16 | 15 | sselda | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → 𝑘 ∈ 𝐼 ) |
| 17 | 1 7 | rrxf | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 : 𝐼 ⟶ ℝ ) |
| 18 | 17 | ffvelcdmda | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 19 | 1 9 | rrxf | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 : 𝐼 ⟶ ℝ ) |
| 20 | 19 | ffvelcdmda | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 21 | 18 20 | resubcld | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 22 | 21 | resqcld | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
| 23 | 16 22 | syldan | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
| 24 | 21 | sqge0d | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → 0 ≤ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 25 | 16 24 | syldan | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → 0 ≤ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 26 | fveq2 | ⊢ ( 𝑘 = 𝐴 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑘 = 𝐴 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝐴 ) ) | |
| 28 | 26 27 | oveq12d | ⊢ ( 𝑘 = 𝐴 → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
| 29 | 28 | oveq1d | ⊢ ( 𝑘 = 𝐴 → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 30 | simplr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) | |
| 31 | 12 23 25 29 30 | fsumge1 | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ≤ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 32 | 15 30 | sseldd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐴 ∈ 𝐼 ) |
| 33 | 17 32 | ffvelcdmd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 34 | 19 32 | ffvelcdmd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
| 35 | 33 34 | resubcld | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ ) |
| 36 | absresq | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 38 | 12 23 | fsumrecl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
| 39 | 12 23 25 | fsumge0 | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 40 | resqrtth | ⊢ ( ( Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) → ( ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) = Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) | |
| 41 | 38 39 40 | syl2anc | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) = Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 42 | 31 37 41 | 3brtr4d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) ≤ ( ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) ) |
| 43 | 35 | recnd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℂ ) |
| 44 | 43 | abscld | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 45 | 38 39 | resqrtcld | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ ℝ ) |
| 46 | 43 | absge0d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 47 | 38 39 | sqrtge0d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 48 | 44 45 46 47 | le2sqd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ≤ ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ↑ 2 ) ≤ ( ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ↑ 2 ) ) ) |
| 49 | 42 48 | mpbird | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ≤ ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 50 | 3 | remetdval | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 51 | 33 34 50 | syl2anc | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 52 | 1 2 | rrxmval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 53 | 52 | 3expb | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 54 | 53 | adantlr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 55 | 49 51 54 | 3brtr4d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 56 | 4 5 6 55 | syl21anc | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 57 | simplll | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐼 ∈ 𝑉 ) | |
| 58 | simplrl | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐹 ∈ 𝑋 ) | |
| 59 | ssun1 | ⊢ ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) | |
| 60 | 59 | a1i | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
| 61 | 60 | sscond | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ⊆ ( 𝐼 ∖ ( 𝐹 supp 0 ) ) ) |
| 62 | 61 | sselda | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐴 ∈ ( 𝐼 ∖ ( 𝐹 supp 0 ) ) ) |
| 63 | simpr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) → 𝐹 ∈ 𝑋 ) | |
| 64 | 1 63 | rrxf | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) → 𝐹 : 𝐼 ⟶ ℝ ) |
| 65 | ssidd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 66 | simpl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) | |
| 67 | 0red | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) → 0 ∈ ℝ ) | |
| 68 | 64 65 66 67 | suppssr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 69 | 57 58 62 68 | syl21anc | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 70 | 0red | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 0 ∈ ℝ ) | |
| 71 | 69 70 | eqeltrd | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 72 | simplrr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐺 ∈ 𝑋 ) | |
| 73 | ssun2 | ⊢ ( 𝐺 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) | |
| 74 | 73 | a1i | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
| 75 | 74 | sscond | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ⊆ ( 𝐼 ∖ ( 𝐺 supp 0 ) ) ) |
| 76 | 75 | sselda | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐴 ∈ ( 𝐼 ∖ ( 𝐺 supp 0 ) ) ) |
| 77 | simpr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 ∈ 𝑋 ) | |
| 78 | 1 77 | rrxf | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 : 𝐼 ⟶ ℝ ) |
| 79 | ssidd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐺 supp 0 ) ⊆ ( 𝐺 supp 0 ) ) | |
| 80 | simpl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) | |
| 81 | 0red | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → 0 ∈ ℝ ) | |
| 82 | 78 79 80 81 | suppssr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( 𝐺 supp 0 ) ) ) → ( 𝐺 ‘ 𝐴 ) = 0 ) |
| 83 | 57 72 76 82 | syl21anc | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 ‘ 𝐴 ) = 0 ) |
| 84 | 83 70 | eqeltrd | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
| 85 | 71 84 50 | syl2anc | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 86 | 69 83 | oveq12d | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) = ( 0 − 0 ) ) |
| 87 | 0m0e0 | ⊢ ( 0 − 0 ) = 0 | |
| 88 | 86 87 | eqtrdi | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) = 0 ) |
| 89 | 88 | abs00bd | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) = 0 ) |
| 90 | 85 89 | eqtrd | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) = 0 ) |
| 91 | 1 2 | rrxmet | ⊢ ( 𝐼 ∈ 𝑉 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 92 | 91 | ad3antrrr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 93 | metge0 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) | |
| 94 | 92 58 72 93 | syl3anc | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 95 | 90 94 | eqbrtrd | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 96 | simplr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐴 ∈ 𝐼 ) | |
| 97 | simprl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ 𝑋 ) | |
| 98 | 1 97 | rrxsuppss | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 supp 0 ) ⊆ 𝐼 ) |
| 99 | simprr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ 𝑋 ) | |
| 100 | 1 99 | rrxsuppss | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 supp 0 ) ⊆ 𝐼 ) |
| 101 | 98 100 | unssd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐼 ) |
| 102 | undif | ⊢ ( ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐼 ↔ ( ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∪ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) = 𝐼 ) | |
| 103 | 101 102 | sylib | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∪ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) = 𝐼 ) |
| 104 | 96 103 | eleqtrrd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐴 ∈ ( ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∪ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) ) |
| 105 | elun | ⊢ ( 𝐴 ∈ ( ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∪ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) ↔ ( 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∨ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) ) | |
| 106 | 104 105 | sylib | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∨ 𝐴 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) ) |
| 107 | 56 95 106 | mpjaodan | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝑀 ( 𝐺 ‘ 𝐴 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |