This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| rrxf.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) | ||
| Assertion | rrxf | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| 2 | rrxf.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) | |
| 3 | 1 | ssrab3 | ⊢ 𝑋 ⊆ ( ℝ ↑m 𝐼 ) |
| 4 | 3 2 | sselid | ⊢ ( 𝜑 → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
| 5 | elmapi | ⊢ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℝ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ℝ ) |