This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of ( RR ^m X ) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxbasefi.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| rrxbasefi.h | ⊢ 𝐻 = ( ℝ^ ‘ 𝑋 ) | ||
| rrxbasefi.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| Assertion | rrxbasefi | ⊢ ( 𝜑 → 𝐵 = ( ℝ ↑m 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxbasefi.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 2 | rrxbasefi.h | ⊢ 𝐻 = ( ℝ^ ‘ 𝑋 ) | |
| 3 | rrxbasefi.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 4 | 2 3 | rrxbase | ⊢ ( 𝑋 ∈ Fin → 𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ) |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → 𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ) |
| 6 | ssrab2 | ⊢ { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ⊆ ( ℝ ↑m 𝑋 ) | |
| 7 | 5 6 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) | |
| 9 | elmapi | ⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → 𝑓 : 𝑋 ⟶ ℝ ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 : 𝑋 ⟶ ℝ ) |
| 11 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑋 ∈ Fin ) |
| 12 | c0ex | ⊢ 0 ∈ V | |
| 13 | 12 | a1i | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 0 ∈ V ) |
| 14 | 10 11 13 | fdmfifsupp | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 finSupp 0 ) |
| 15 | rabid | ⊢ ( 𝑓 ∈ { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ↔ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑓 finSupp 0 ) ) | |
| 16 | 8 14 15 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 ∈ { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } ) |
| 17 | 5 | eqcomd | ⊢ ( 𝜑 → { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } = 𝐵 ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → { 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∣ 𝑓 finSupp 0 } = 𝐵 ) |
| 19 | 16 18 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 ∈ 𝐵 ) |
| 20 | 7 19 | eqelssd | ⊢ ( 𝜑 → 𝐵 = ( ℝ ↑m 𝑋 ) ) |