This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumge0.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| fsumge0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| fsumge1.4 | ⊢ ( 𝑘 = 𝑀 → 𝐵 = 𝐶 ) | ||
| fsumge1.5 | ⊢ ( 𝜑 → 𝑀 ∈ 𝐴 ) | ||
| Assertion | fsumge1 | ⊢ ( 𝜑 → 𝐶 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | fsumge0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 4 | fsumge1.4 | ⊢ ( 𝑘 = 𝑀 → 𝐵 = 𝐶 ) | |
| 5 | fsumge1.5 | ⊢ ( 𝜑 → 𝑀 ∈ 𝐴 ) | |
| 6 | 4 | eleq1d | ⊢ ( 𝑘 = 𝑀 → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 7 | 2 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 9 | 6 8 5 | rspcdva | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 10 | 4 | sumsn | ⊢ ( ( 𝑀 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑀 } 𝐵 = 𝐶 ) |
| 11 | 5 9 10 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } 𝐵 = 𝐶 ) |
| 12 | 5 | snssd | ⊢ ( 𝜑 → { 𝑀 } ⊆ 𝐴 ) |
| 13 | 1 2 3 12 | fsumless | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 14 | 11 13 | eqbrtrrd | ⊢ ( 𝜑 → 𝐶 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |