This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinv.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinv.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| grpinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvid2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) = 𝑌 ↔ ( 𝑌 + 𝑋 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinv.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinv.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | grpinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 5 | oveq1 | ⊢ ( ( 𝑁 ‘ 𝑋 ) = 𝑌 → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = ( 𝑌 + 𝑋 ) ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 𝑌 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = ( 𝑌 + 𝑋 ) ) |
| 7 | 1 2 3 4 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 𝑌 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| 10 | 6 9 | eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 𝑌 ) → ( 𝑌 + 𝑋 ) = 0 ) |
| 11 | 1 4 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 | 1 2 3 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( 0 + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 13 | 11 12 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 15 | 14 | eqcomd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( 0 + ( 𝑁 ‘ 𝑋 ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 + 𝑋 ) = 0 ) → ( 𝑁 ‘ 𝑋 ) = ( 0 + ( 𝑁 ‘ 𝑋 ) ) ) |
| 17 | oveq1 | ⊢ ( ( 𝑌 + 𝑋 ) = 0 → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 0 + ( 𝑁 ‘ 𝑋 ) ) ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 + 𝑋 ) = 0 ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 0 + ( 𝑁 ‘ 𝑋 ) ) ) |
| 19 | simprr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 20 | simprl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 21 | 11 | adantrr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 22 | 19 20 21 | 3jca | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 23 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 + ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 24 | 22 23 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 + ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 25 | 24 | 3impb | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 + ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 26 | 1 2 3 4 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = 0 ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 + ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑌 + 0 ) ) |
| 28 | 27 | 3adant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑌 + 0 ) ) |
| 29 | 1 2 3 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + 0 ) = 𝑌 ) |
| 30 | 29 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + 0 ) = 𝑌 ) |
| 31 | 25 28 30 | 3eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = 𝑌 ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 + 𝑋 ) = 0 ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = 𝑌 ) |
| 33 | 16 18 32 | 3eqtr2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 + 𝑋 ) = 0 ) → ( 𝑁 ‘ 𝑋 ) = 𝑌 ) |
| 34 | 10 33 | impbida | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) = 𝑌 ↔ ( 𝑌 + 𝑋 ) = 0 ) ) |