This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double negation of a product in a non-unital ring ( mul2neg analog). (Contributed by Mario Carneiro, 4-Dec-2014) Generalization of ringm2neg . (Revised by AV, 17-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngneglmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rngneglmul.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rngneglmul.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| rngneglmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | ||
| rngneglmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| rngneglmul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | rngm2neg | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑋 · 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rngneglmul.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | rngneglmul.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 4 | rngneglmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
| 5 | rngneglmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | rngneglmul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | rnggrp | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) | |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 9 | 1 3 8 6 | grpinvcld | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 10 | 1 2 3 4 5 9 | rngmneg1 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 11 | 1 2 3 4 5 6 | rngmneg2 | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |
| 12 | 11 | fveq2d | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ) = ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) ) |
| 13 | 1 2 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 14 | 4 5 6 13 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 15 | 1 3 | grpinvinv | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 · 𝑌 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) = ( 𝑋 · 𝑌 ) ) |
| 16 | 8 14 15 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) = ( 𝑋 · 𝑌 ) ) |
| 17 | 10 12 16 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑋 · 𝑌 ) ) |