This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left inverse of a group element. Deduction associated with grplinv . (Contributed by SN, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplinvd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grplinvd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grplinvd.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| grplinvd.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| grplinvd.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| grplinvd.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | grplinvd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplinvd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grplinvd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grplinvd.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | grplinvd.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 5 | grplinvd.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 6 | grplinvd.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | 1 2 3 4 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| 8 | 5 6 7 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |