This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every non-unital ring contains a zero ideal. (Contributed by AV, 19-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidl0.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| rnglidl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | rnglidl0 | ⊢ ( 𝑅 ∈ Rng → { 0 } ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl0.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | rnglidl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 3 2 | rng0cl | ⊢ ( 𝑅 ∈ Rng → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 5 | 4 | snssd | ⊢ ( 𝑅 ∈ Rng → { 0 } ⊆ ( Base ‘ 𝑅 ) ) |
| 6 | 2 | fvexi | ⊢ 0 ∈ V |
| 7 | 6 | a1i | ⊢ ( 𝑅 ∈ Rng → 0 ∈ V ) |
| 8 | 7 | snn0d | ⊢ ( 𝑅 ∈ Rng → { 0 } ≠ ∅ ) |
| 9 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 10 | 3 9 2 | rngrz | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 11 | 10 | oveq1d | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) = ( 0 ( +g ‘ 𝑅 ) 0 ) ) |
| 12 | rnggrp | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) | |
| 13 | 3 2 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 14 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 15 | 3 14 2 | grprid | ⊢ ( ( 𝑅 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 16 | 12 13 15 | syl2anc2 | ⊢ ( 𝑅 ∈ Rng → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 18 | 11 17 | eqtrd | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 19 | 6 | elsn2 | ⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 20 | 18 19 | sylibr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) |
| 21 | oveq2 | ⊢ ( 𝑦 = 0 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ) | |
| 22 | 21 | oveq1d | ⊢ ( 𝑦 = 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ) |
| 23 | 22 | eleq1d | ⊢ ( 𝑦 = 0 → ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) ) |
| 24 | 23 | ralbidv | ⊢ ( 𝑦 = 0 → ( ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) ) |
| 25 | 6 24 | ralsn | ⊢ ( ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) |
| 26 | oveq2 | ⊢ ( 𝑧 = 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ) | |
| 27 | 26 | eleq1d | ⊢ ( 𝑧 = 0 → ( ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) ) |
| 28 | 6 27 | ralsn | ⊢ ( ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) |
| 29 | 25 28 | bitri | ⊢ ( ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) |
| 30 | 20 29 | sylibr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) |
| 31 | 30 | ralrimiva | ⊢ ( 𝑅 ∈ Rng → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) |
| 32 | 1 3 14 9 | islidl | ⊢ ( { 0 } ∈ 𝑈 ↔ ( { 0 } ⊆ ( Base ‘ 𝑅 ) ∧ { 0 } ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) ) |
| 33 | 5 8 31 32 | syl3anbrc | ⊢ ( 𝑅 ∈ Rng → { 0 } ∈ 𝑈 ) |