This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every non-unital ring contains a zero ideal. (Contributed by AV, 19-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidl0.u | |- U = ( LIdeal ` R ) |
|
| rnglidl0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | rnglidl0 | |- ( R e. Rng -> { .0. } e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl0.u | |- U = ( LIdeal ` R ) |
|
| 2 | rnglidl0.z | |- .0. = ( 0g ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 3 2 | rng0cl | |- ( R e. Rng -> .0. e. ( Base ` R ) ) |
| 5 | 4 | snssd | |- ( R e. Rng -> { .0. } C_ ( Base ` R ) ) |
| 6 | 2 | fvexi | |- .0. e. _V |
| 7 | 6 | a1i | |- ( R e. Rng -> .0. e. _V ) |
| 8 | 7 | snn0d | |- ( R e. Rng -> { .0. } =/= (/) ) |
| 9 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 10 | 3 9 2 | rngrz | |- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) .0. ) = .0. ) |
| 11 | 10 | oveq1d | |- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = ( .0. ( +g ` R ) .0. ) ) |
| 12 | rnggrp | |- ( R e. Rng -> R e. Grp ) |
|
| 13 | 3 2 | grpidcl | |- ( R e. Grp -> .0. e. ( Base ` R ) ) |
| 14 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 15 | 3 14 2 | grprid | |- ( ( R e. Grp /\ .0. e. ( Base ` R ) ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 16 | 12 13 15 | syl2anc2 | |- ( R e. Rng -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 17 | 16 | adantr | |- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 18 | 11 17 | eqtrd | |- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = .0. ) |
| 19 | 6 | elsn2 | |- ( ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = .0. ) |
| 20 | 18 19 | sylibr | |- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) |
| 21 | oveq2 | |- ( y = .0. -> ( x ( .r ` R ) y ) = ( x ( .r ` R ) .0. ) ) |
|
| 22 | 21 | oveq1d | |- ( y = .0. -> ( ( x ( .r ` R ) y ) ( +g ` R ) z ) = ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) ) |
| 23 | 22 | eleq1d | |- ( y = .0. -> ( ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) ) |
| 24 | 23 | ralbidv | |- ( y = .0. -> ( A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) ) |
| 25 | 6 24 | ralsn | |- ( A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) |
| 26 | oveq2 | |- ( z = .0. -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) = ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) ) |
|
| 27 | 26 | eleq1d | |- ( z = .0. -> ( ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) ) |
| 28 | 6 27 | ralsn | |- ( A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) |
| 29 | 25 28 | bitri | |- ( A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) |
| 30 | 20 29 | sylibr | |- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) |
| 31 | 30 | ralrimiva | |- ( R e. Rng -> A. x e. ( Base ` R ) A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) |
| 32 | 1 3 14 9 | islidl | |- ( { .0. } e. U <-> ( { .0. } C_ ( Base ` R ) /\ { .0. } =/= (/) /\ A. x e. ( Base ` R ) A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) ) |
| 33 | 5 8 31 32 | syl3anbrc | |- ( R e. Rng -> { .0. } e. U ) |