This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right module R induces a left module L by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod of a left module, see also islmod . (Contributed by AV, 3-Dec-2021) (Proof shortened by AV, 18-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rmodislmod.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | |
| rmodislmod.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| rmodislmod.s | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | ||
| rmodislmod.f | ⊢ 𝐹 = ( Scalar ‘ 𝑅 ) | ||
| rmodislmod.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| rmodislmod.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | ||
| rmodislmod.t | ⊢ × = ( .r ‘ 𝐹 ) | ||
| rmodislmod.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | ||
| rmodislmod.r | ⊢ ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) | ||
| rmodislmod.m | ⊢ ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) | ||
| rmodislmod.l | ⊢ 𝐿 = ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) | ||
| Assertion | rmodislmod | ⊢ ( 𝐹 ∈ CRing → 𝐿 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmodislmod.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | |
| 2 | rmodislmod.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | rmodislmod.s | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | |
| 4 | rmodislmod.f | ⊢ 𝐹 = ( Scalar ‘ 𝑅 ) | |
| 5 | rmodislmod.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | rmodislmod.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | |
| 7 | rmodislmod.t | ⊢ × = ( .r ‘ 𝐹 ) | |
| 8 | rmodislmod.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | |
| 9 | rmodislmod.r | ⊢ ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) | |
| 10 | rmodislmod.m | ⊢ ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) | |
| 11 | rmodislmod.l | ⊢ 𝐿 = ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) | |
| 12 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 13 | vscandxnbasendx | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 14 | 13 | necomi | ⊢ ( Base ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 15 | 12 14 | setsnid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 16 | 1 15 | eqtri | ⊢ 𝑉 = ( Base ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 17 | 11 | eqcomi | ⊢ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) = 𝐿 |
| 18 | 17 | fveq2i | ⊢ ( Base ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) = ( Base ‘ 𝐿 ) |
| 19 | 16 18 | eqtri | ⊢ 𝑉 = ( Base ‘ 𝐿 ) |
| 20 | 19 | a1i | ⊢ ( 𝐹 ∈ CRing → 𝑉 = ( Base ‘ 𝐿 ) ) |
| 21 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 22 | vscandxnplusgndx | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 23 | 22 | necomi | ⊢ ( +g ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 24 | 21 23 | setsnid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 25 | 11 | fveq2i | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 26 | 24 2 25 | 3eqtr4i | ⊢ + = ( +g ‘ 𝐿 ) |
| 27 | 26 | a1i | ⊢ ( 𝐹 ∈ CRing → + = ( +g ‘ 𝐿 ) ) |
| 28 | scaid | ⊢ Scalar = Slot ( Scalar ‘ ndx ) | |
| 29 | vscandxnscandx | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( Scalar ‘ ndx ) | |
| 30 | 29 | necomi | ⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 31 | 28 30 | setsnid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 32 | 11 | fveq2i | ⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 33 | 31 4 32 | 3eqtr4i | ⊢ 𝐹 = ( Scalar ‘ 𝐿 ) |
| 34 | 33 | a1i | ⊢ ( 𝐹 ∈ CRing → 𝐹 = ( Scalar ‘ 𝐿 ) ) |
| 35 | 9 | simp1i | ⊢ 𝑅 ∈ Grp |
| 36 | 5 | fvexi | ⊢ 𝐾 ∈ V |
| 37 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 38 | 10 | mpoexg | ⊢ ( ( 𝐾 ∈ V ∧ 𝑉 ∈ V ) → ∗ ∈ V ) |
| 39 | 36 37 38 | mp2an | ⊢ ∗ ∈ V |
| 40 | vscaid | ⊢ ·𝑠 = Slot ( ·𝑠 ‘ ndx ) | |
| 41 | 40 | setsid | ⊢ ( ( 𝑅 ∈ Grp ∧ ∗ ∈ V ) → ∗ = ( ·𝑠 ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) ) |
| 42 | 35 39 41 | mp2an | ⊢ ∗ = ( ·𝑠 ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 43 | 17 | fveq2i | ⊢ ( ·𝑠 ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) = ( ·𝑠 ‘ 𝐿 ) |
| 44 | 42 43 | eqtri | ⊢ ∗ = ( ·𝑠 ‘ 𝐿 ) |
| 45 | 44 | a1i | ⊢ ( 𝐹 ∈ CRing → ∗ = ( ·𝑠 ‘ 𝐿 ) ) |
| 46 | 5 | a1i | ⊢ ( 𝐹 ∈ CRing → 𝐾 = ( Base ‘ 𝐹 ) ) |
| 47 | 6 | a1i | ⊢ ( 𝐹 ∈ CRing → ⨣ = ( +g ‘ 𝐹 ) ) |
| 48 | 7 | a1i | ⊢ ( 𝐹 ∈ CRing → × = ( .r ‘ 𝐹 ) ) |
| 49 | 8 | a1i | ⊢ ( 𝐹 ∈ CRing → 1 = ( 1r ‘ 𝐹 ) ) |
| 50 | crngring | ⊢ ( 𝐹 ∈ CRing → 𝐹 ∈ Ring ) | |
| 51 | 1 | eqcomi | ⊢ ( Base ‘ 𝑅 ) = 𝑉 |
| 52 | 51 19 | eqtri | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐿 ) |
| 53 | 24 25 | eqtr4i | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝐿 ) |
| 54 | 52 53 | grpprop | ⊢ ( 𝑅 ∈ Grp ↔ 𝐿 ∈ Grp ) |
| 55 | 35 54 | mpbi | ⊢ 𝐿 ∈ Grp |
| 56 | 55 | a1i | ⊢ ( 𝐹 ∈ CRing → 𝐿 ∈ Grp ) |
| 57 | 10 | a1i | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
| 58 | oveq12 | ⊢ ( ( 𝑣 = 𝑏 ∧ 𝑠 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) | |
| 59 | 58 | ancoms | ⊢ ( ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑏 ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) |
| 60 | 59 | adantl | ⊢ ( ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑏 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) |
| 61 | simp2 | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → 𝑎 ∈ 𝐾 ) | |
| 62 | simp3 | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) | |
| 63 | ovexd | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ V ) | |
| 64 | 57 60 61 62 63 | ovmpod | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑏 ) = ( 𝑏 · 𝑎 ) ) |
| 65 | simpl1 | ⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( 𝑤 · 𝑟 ) ∈ 𝑉 ) | |
| 66 | 65 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
| 67 | 66 | 2ralimi | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
| 68 | ringgrp | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) | |
| 69 | 5 | grpbn0 | ⊢ ( 𝐹 ∈ Grp → 𝐾 ≠ ∅ ) |
| 70 | 68 69 | syl | ⊢ ( 𝐹 ∈ Ring → 𝐾 ≠ ∅ ) |
| 71 | 70 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → 𝐾 ≠ ∅ ) |
| 72 | 9 71 | ax-mp | ⊢ 𝐾 ≠ ∅ |
| 73 | rspn0 | ⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) ) | |
| 74 | 72 73 | ax-mp | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
| 75 | ralcom | ⊢ ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) | |
| 76 | 1 | grpbn0 | ⊢ ( 𝑅 ∈ Grp → 𝑉 ≠ ∅ ) |
| 77 | 76 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → 𝑉 ≠ ∅ ) |
| 78 | 9 77 | ax-mp | ⊢ 𝑉 ≠ ∅ |
| 79 | rspn0 | ⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) ) | |
| 80 | 78 79 | ax-mp | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
| 81 | oveq2 | ⊢ ( 𝑟 = 𝑎 → ( 𝑤 · 𝑟 ) = ( 𝑤 · 𝑎 ) ) | |
| 82 | 81 | eleq1d | ⊢ ( 𝑟 = 𝑎 → ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ↔ ( 𝑤 · 𝑎 ) ∈ 𝑉 ) ) |
| 83 | oveq1 | ⊢ ( 𝑤 = 𝑏 → ( 𝑤 · 𝑎 ) = ( 𝑏 · 𝑎 ) ) | |
| 84 | 83 | eleq1d | ⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 · 𝑎 ) ∈ 𝑉 ↔ ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 85 | 82 84 | rspc2v | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 86 | 85 | 3adant1 | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 87 | 80 86 | syl5com | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 88 | 75 87 | sylbi | ⊢ ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 89 | 67 74 88 | 3syl | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 90 | 89 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 91 | 9 90 | ax-mp | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) |
| 92 | 64 91 | eqeltrd | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑏 ) ∈ 𝑉 ) |
| 93 | 10 | a1i | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
| 94 | oveq12 | ⊢ ( ( 𝑣 = ( 𝑏 + 𝑐 ) ∧ 𝑠 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) | |
| 95 | 94 | ancoms | ⊢ ( ( 𝑠 = 𝑎 ∧ 𝑣 = ( 𝑏 + 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
| 96 | 95 | adantl | ⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = ( 𝑏 + 𝑐 ) ) ) → ( 𝑣 · 𝑠 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
| 97 | simp1 | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → 𝑎 ∈ 𝐾 ) | |
| 98 | 1 2 | grpcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 + 𝑐 ) ∈ 𝑉 ) |
| 99 | 35 98 | mp3an1 | ⊢ ( ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 + 𝑐 ) ∈ 𝑉 ) |
| 100 | 99 | 3adant1 | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 + 𝑐 ) ∈ 𝑉 ) |
| 101 | ovexd | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) ∈ V ) | |
| 102 | 93 96 97 100 101 | ovmpod | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
| 103 | simpl2 | ⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) | |
| 104 | 103 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) |
| 105 | 104 | 2ralimi | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) |
| 106 | rspn0 | ⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) ) | |
| 107 | 72 106 | ax-mp | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) |
| 108 | oveq2 | ⊢ ( 𝑟 = 𝑎 → ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 + 𝑥 ) · 𝑎 ) ) | |
| 109 | oveq2 | ⊢ ( 𝑟 = 𝑎 → ( 𝑥 · 𝑟 ) = ( 𝑥 · 𝑎 ) ) | |
| 110 | 81 109 | oveq12d | ⊢ ( 𝑟 = 𝑎 → ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) ) |
| 111 | 108 110 | eqeq12d | ⊢ ( 𝑟 = 𝑎 → ( ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ↔ ( ( 𝑤 + 𝑥 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) ) ) |
| 112 | oveq2 | ⊢ ( 𝑥 = 𝑐 → ( 𝑤 + 𝑥 ) = ( 𝑤 + 𝑐 ) ) | |
| 113 | 112 | oveq1d | ⊢ ( 𝑥 = 𝑐 → ( ( 𝑤 + 𝑥 ) · 𝑎 ) = ( ( 𝑤 + 𝑐 ) · 𝑎 ) ) |
| 114 | oveq1 | ⊢ ( 𝑥 = 𝑐 → ( 𝑥 · 𝑎 ) = ( 𝑐 · 𝑎 ) ) | |
| 115 | 114 | oveq2d | ⊢ ( 𝑥 = 𝑐 → ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 116 | 113 115 | eqeq12d | ⊢ ( 𝑥 = 𝑐 → ( ( ( 𝑤 + 𝑥 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) ↔ ( ( 𝑤 + 𝑐 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 117 | oveq1 | ⊢ ( 𝑤 = 𝑏 → ( 𝑤 + 𝑐 ) = ( 𝑏 + 𝑐 ) ) | |
| 118 | 117 | oveq1d | ⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
| 119 | 83 | oveq1d | ⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 120 | 118 119 | eqeq12d | ⊢ ( 𝑤 = 𝑏 → ( ( ( 𝑤 + 𝑐 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ↔ ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 121 | 111 116 120 | rspc3v | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 122 | 121 | 3com23 | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 123 | 107 122 | syl5com | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 124 | 105 123 | syl | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 125 | 124 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 126 | 9 125 | ax-mp | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 127 | 102 126 | eqtrd | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 128 | 127 | adantl | ⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 129 | 59 | adantl | ⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑏 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) |
| 130 | simp2 | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) | |
| 131 | ovexd | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ V ) | |
| 132 | 93 129 97 130 131 | ovmpod | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑏 ) = ( 𝑏 · 𝑎 ) ) |
| 133 | oveq12 | ⊢ ( ( 𝑣 = 𝑐 ∧ 𝑠 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) | |
| 134 | 133 | ancoms | ⊢ ( ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) |
| 135 | 134 | adantl | ⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) |
| 136 | simp3 | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → 𝑐 ∈ 𝑉 ) | |
| 137 | ovexd | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · 𝑎 ) ∈ V ) | |
| 138 | 93 135 97 136 137 | ovmpod | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑐 ) = ( 𝑐 · 𝑎 ) ) |
| 139 | 132 138 | oveq12d | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ∗ 𝑏 ) + ( 𝑎 ∗ 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 140 | 139 | adantl | ⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑎 ∗ 𝑏 ) + ( 𝑎 ∗ 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 141 | 128 140 | eqtr4d | ⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 ∗ 𝑏 ) + ( 𝑎 ∗ 𝑐 ) ) ) |
| 142 | simpl3 | ⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) | |
| 143 | 142 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
| 144 | 143 | 2ralimi | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
| 145 | ralrot3 | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) | |
| 146 | rspn0 | ⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ) | |
| 147 | 78 146 | ax-mp | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
| 148 | oveq1 | ⊢ ( 𝑞 = 𝑎 → ( 𝑞 ⨣ 𝑟 ) = ( 𝑎 ⨣ 𝑟 ) ) | |
| 149 | 148 | oveq2d | ⊢ ( 𝑞 = 𝑎 → ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) ) |
| 150 | oveq2 | ⊢ ( 𝑞 = 𝑎 → ( 𝑤 · 𝑞 ) = ( 𝑤 · 𝑎 ) ) | |
| 151 | 150 | oveq1d | ⊢ ( 𝑞 = 𝑎 → ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) ) |
| 152 | 149 151 | eqeq12d | ⊢ ( 𝑞 = 𝑎 → ( ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ↔ ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) ) ) |
| 153 | oveq2 | ⊢ ( 𝑟 = 𝑏 → ( 𝑎 ⨣ 𝑟 ) = ( 𝑎 ⨣ 𝑏 ) ) | |
| 154 | 153 | oveq2d | ⊢ ( 𝑟 = 𝑏 → ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) = ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) ) |
| 155 | oveq2 | ⊢ ( 𝑟 = 𝑏 → ( 𝑤 · 𝑟 ) = ( 𝑤 · 𝑏 ) ) | |
| 156 | 155 | oveq2d | ⊢ ( 𝑟 = 𝑏 → ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) ) |
| 157 | 154 156 | eqeq12d | ⊢ ( 𝑟 = 𝑏 → ( ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) ↔ ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) ) ) |
| 158 | oveq1 | ⊢ ( 𝑤 = 𝑐 → ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) | |
| 159 | oveq1 | ⊢ ( 𝑤 = 𝑐 → ( 𝑤 · 𝑎 ) = ( 𝑐 · 𝑎 ) ) | |
| 160 | oveq1 | ⊢ ( 𝑤 = 𝑐 → ( 𝑤 · 𝑏 ) = ( 𝑐 · 𝑏 ) ) | |
| 161 | 159 160 | oveq12d | ⊢ ( 𝑤 = 𝑐 → ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) |
| 162 | 158 161 | eqeq12d | ⊢ ( 𝑤 = 𝑐 → ( ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) ↔ ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 163 | 152 157 162 | rspc3v | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 164 | 147 163 | syl5com | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 165 | 145 164 | sylbi | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 166 | 144 165 | syl | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 167 | 166 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 168 | 9 167 | ax-mp | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) |
| 169 | 10 | a1i | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
| 170 | oveq12 | ⊢ ( ( 𝑣 = 𝑐 ∧ 𝑠 = ( 𝑎 ⨣ 𝑏 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) | |
| 171 | 170 | ancoms | ⊢ ( ( 𝑠 = ( 𝑎 ⨣ 𝑏 ) ∧ 𝑣 = 𝑐 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
| 172 | 171 | adantl | ⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = ( 𝑎 ⨣ 𝑏 ) ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
| 173 | 5 6 | grpcl | ⊢ ( ( 𝐹 ∈ Grp ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) |
| 174 | 173 | 3expib | ⊢ ( 𝐹 ∈ Grp → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) ) |
| 175 | 68 174 | syl | ⊢ ( 𝐹 ∈ Ring → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) ) |
| 176 | 175 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) ) |
| 177 | 9 176 | ax-mp | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) |
| 178 | 177 | 3adant3 | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) |
| 179 | simp3 | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → 𝑐 ∈ 𝑉 ) | |
| 180 | ovexd | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ∈ V ) | |
| 181 | 169 172 178 179 180 | ovmpod | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ⨣ 𝑏 ) ∗ 𝑐 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
| 182 | 134 | adantl | ⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) |
| 183 | simp1 | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → 𝑎 ∈ 𝐾 ) | |
| 184 | ovexd | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · 𝑎 ) ∈ V ) | |
| 185 | 169 182 183 179 184 | ovmpod | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑐 ) = ( 𝑐 · 𝑎 ) ) |
| 186 | oveq12 | ⊢ ( ( 𝑣 = 𝑐 ∧ 𝑠 = 𝑏 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑏 ) ) | |
| 187 | 186 | ancoms | ⊢ ( ( 𝑠 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑏 ) ) |
| 188 | 187 | adantl | ⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑏 ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑏 ) ) |
| 189 | simp2 | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → 𝑏 ∈ 𝐾 ) | |
| 190 | ovexd | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · 𝑏 ) ∈ V ) | |
| 191 | 169 188 189 179 190 | ovmpod | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 ∗ 𝑐 ) = ( 𝑐 · 𝑏 ) ) |
| 192 | 185 191 | oveq12d | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ∗ 𝑐 ) + ( 𝑏 ∗ 𝑐 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) |
| 193 | 168 181 192 | 3eqtr4d | ⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ⨣ 𝑏 ) ∗ 𝑐 ) = ( ( 𝑎 ∗ 𝑐 ) + ( 𝑏 ∗ 𝑐 ) ) ) |
| 194 | 193 | adantl | ⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑎 ⨣ 𝑏 ) ∗ 𝑐 ) = ( ( 𝑎 ∗ 𝑐 ) + ( 𝑏 ∗ 𝑐 ) ) ) |
| 195 | 1 2 3 4 5 6 7 8 9 10 11 | rmodislmodlem | ⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑎 × 𝑏 ) ∗ 𝑐 ) = ( 𝑎 ∗ ( 𝑏 ∗ 𝑐 ) ) ) |
| 196 | 10 | a1i | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
| 197 | oveq12 | ⊢ ( ( 𝑣 = 𝑎 ∧ 𝑠 = 1 ) → ( 𝑣 · 𝑠 ) = ( 𝑎 · 1 ) ) | |
| 198 | 197 | ancoms | ⊢ ( ( 𝑠 = 1 ∧ 𝑣 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( 𝑎 · 1 ) ) |
| 199 | 198 | adantl | ⊢ ( ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑠 = 1 ∧ 𝑣 = 𝑎 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑎 · 1 ) ) |
| 200 | 5 8 | ringidcl | ⊢ ( 𝐹 ∈ Ring → 1 ∈ 𝐾 ) |
| 201 | 50 200 | syl | ⊢ ( 𝐹 ∈ CRing → 1 ∈ 𝐾 ) |
| 202 | 201 | adantr | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → 1 ∈ 𝐾 ) |
| 203 | simpr | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) | |
| 204 | ovexd | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) ∈ V ) | |
| 205 | 196 199 202 203 204 | ovmpod | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 1 ∗ 𝑎 ) = ( 𝑎 · 1 ) ) |
| 206 | simprr | ⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( 𝑤 · 1 ) = 𝑤 ) | |
| 207 | 206 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
| 208 | 207 | 2ralimi | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
| 209 | rspn0 | ⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) ) | |
| 210 | 72 209 | ax-mp | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
| 211 | rspn0 | ⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) ) | |
| 212 | 72 211 | ax-mp | ⊢ ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
| 213 | rspn0 | ⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) ) | |
| 214 | 78 213 | ax-mp | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
| 215 | oveq1 | ⊢ ( 𝑤 = 𝑎 → ( 𝑤 · 1 ) = ( 𝑎 · 1 ) ) | |
| 216 | id | ⊢ ( 𝑤 = 𝑎 → 𝑤 = 𝑎 ) | |
| 217 | 215 216 | eqeq12d | ⊢ ( 𝑤 = 𝑎 → ( ( 𝑤 · 1 ) = 𝑤 ↔ ( 𝑎 · 1 ) = 𝑎 ) ) |
| 218 | 217 | rspcv | ⊢ ( 𝑎 ∈ 𝑉 → ( ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ( 𝑎 · 1 ) = 𝑎 ) ) |
| 219 | 218 | adantl | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ( 𝑎 · 1 ) = 𝑎 ) ) |
| 220 | 214 219 | syl5com | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) ) |
| 221 | 208 210 212 220 | 4syl | ⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) ) |
| 222 | 221 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) ) |
| 223 | 9 222 | ax-mp | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) |
| 224 | 205 223 | eqtrd | ⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 1 ∗ 𝑎 ) = 𝑎 ) |
| 225 | 20 27 34 45 46 47 48 49 50 56 92 141 194 195 224 | islmodd | ⊢ ( 𝐹 ∈ CRing → 𝐿 ∈ LMod ) |