This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lmod | ⊢ LMod = { 𝑔 ∈ Grp ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clmod | ⊢ LMod | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cgrp | ⊢ Grp | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑔 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑔 ) |
| 6 | vv | ⊢ 𝑣 | |
| 7 | cplusg | ⊢ +g | |
| 8 | 4 7 | cfv | ⊢ ( +g ‘ 𝑔 ) |
| 9 | va | ⊢ 𝑎 | |
| 10 | csca | ⊢ Scalar | |
| 11 | 4 10 | cfv | ⊢ ( Scalar ‘ 𝑔 ) |
| 12 | vf | ⊢ 𝑓 | |
| 13 | cvsca | ⊢ ·𝑠 | |
| 14 | 4 13 | cfv | ⊢ ( ·𝑠 ‘ 𝑔 ) |
| 15 | vs | ⊢ 𝑠 | |
| 16 | 12 | cv | ⊢ 𝑓 |
| 17 | 16 3 | cfv | ⊢ ( Base ‘ 𝑓 ) |
| 18 | vk | ⊢ 𝑘 | |
| 19 | 16 7 | cfv | ⊢ ( +g ‘ 𝑓 ) |
| 20 | vp | ⊢ 𝑝 | |
| 21 | cmulr | ⊢ .r | |
| 22 | 16 21 | cfv | ⊢ ( .r ‘ 𝑓 ) |
| 23 | vt | ⊢ 𝑡 | |
| 24 | crg | ⊢ Ring | |
| 25 | 16 24 | wcel | ⊢ 𝑓 ∈ Ring |
| 26 | vq | ⊢ 𝑞 | |
| 27 | 18 | cv | ⊢ 𝑘 |
| 28 | vr | ⊢ 𝑟 | |
| 29 | vx | ⊢ 𝑥 | |
| 30 | 6 | cv | ⊢ 𝑣 |
| 31 | vw | ⊢ 𝑤 | |
| 32 | 28 | cv | ⊢ 𝑟 |
| 33 | 15 | cv | ⊢ 𝑠 |
| 34 | 31 | cv | ⊢ 𝑤 |
| 35 | 32 34 33 | co | ⊢ ( 𝑟 𝑠 𝑤 ) |
| 36 | 35 30 | wcel | ⊢ ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 |
| 37 | 9 | cv | ⊢ 𝑎 |
| 38 | 29 | cv | ⊢ 𝑥 |
| 39 | 34 38 37 | co | ⊢ ( 𝑤 𝑎 𝑥 ) |
| 40 | 32 39 33 | co | ⊢ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) |
| 41 | 32 38 33 | co | ⊢ ( 𝑟 𝑠 𝑥 ) |
| 42 | 35 41 37 | co | ⊢ ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) |
| 43 | 40 42 | wceq | ⊢ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) |
| 44 | 26 | cv | ⊢ 𝑞 |
| 45 | 20 | cv | ⊢ 𝑝 |
| 46 | 44 32 45 | co | ⊢ ( 𝑞 𝑝 𝑟 ) |
| 47 | 46 34 33 | co | ⊢ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) |
| 48 | 44 34 33 | co | ⊢ ( 𝑞 𝑠 𝑤 ) |
| 49 | 48 35 37 | co | ⊢ ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) |
| 50 | 47 49 | wceq | ⊢ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) |
| 51 | 36 43 50 | w3a | ⊢ ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) |
| 52 | 23 | cv | ⊢ 𝑡 |
| 53 | 44 32 52 | co | ⊢ ( 𝑞 𝑡 𝑟 ) |
| 54 | 53 34 33 | co | ⊢ ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) |
| 55 | 44 35 33 | co | ⊢ ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) |
| 56 | 54 55 | wceq | ⊢ ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) |
| 57 | cur | ⊢ 1r | |
| 58 | 16 57 | cfv | ⊢ ( 1r ‘ 𝑓 ) |
| 59 | 58 34 33 | co | ⊢ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) |
| 60 | 59 34 | wceq | ⊢ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 |
| 61 | 56 60 | wa | ⊢ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) |
| 62 | 51 61 | wa | ⊢ ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) |
| 63 | 62 31 30 | wral | ⊢ ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) |
| 64 | 63 29 30 | wral | ⊢ ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) |
| 65 | 64 28 27 | wral | ⊢ ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) |
| 66 | 65 26 27 | wral | ⊢ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) |
| 67 | 25 66 | wa | ⊢ ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 68 | 67 23 22 | wsbc | ⊢ [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 69 | 68 20 19 | wsbc | ⊢ [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 70 | 69 18 17 | wsbc | ⊢ [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 71 | 70 15 14 | wsbc | ⊢ [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 72 | 71 12 11 | wsbc | ⊢ [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 73 | 72 9 8 | wsbc | ⊢ [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 74 | 73 6 5 | wsbc | ⊢ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 75 | 74 1 2 | crab | ⊢ { 𝑔 ∈ Grp ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) } |
| 76 | 0 75 | wceq | ⊢ LMod = { 𝑔 ∈ Grp ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) } |