This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a left module". (Contributed by NM, 4-Nov-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmod.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| islmod.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| islmod.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| islmod.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| islmod.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| islmod.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | ||
| islmod.t | ⊢ × = ( .r ‘ 𝐹 ) | ||
| islmod.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | ||
| Assertion | islmod | ⊢ ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmod.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | islmod.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | islmod.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | islmod.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | islmod.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | islmod.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | |
| 7 | islmod.t | ⊢ × = ( .r ‘ 𝐹 ) | |
| 8 | islmod.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | |
| 9 | fveq2 | ⊢ ( 𝑔 = 𝑊 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝑊 ) ) | |
| 10 | 9 1 | eqtr4di | ⊢ ( 𝑔 = 𝑊 → ( Base ‘ 𝑔 ) = 𝑉 ) |
| 11 | fveq2 | ⊢ ( 𝑔 = 𝑊 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝑊 ) ) | |
| 12 | 11 2 | eqtr4di | ⊢ ( 𝑔 = 𝑊 → ( +g ‘ 𝑔 ) = + ) |
| 13 | fveq2 | ⊢ ( 𝑔 = 𝑊 → ( Scalar ‘ 𝑔 ) = ( Scalar ‘ 𝑊 ) ) | |
| 14 | 13 4 | eqtr4di | ⊢ ( 𝑔 = 𝑊 → ( Scalar ‘ 𝑔 ) = 𝐹 ) |
| 15 | fveq2 | ⊢ ( 𝑔 = 𝑊 → ( ·𝑠 ‘ 𝑔 ) = ( ·𝑠 ‘ 𝑊 ) ) | |
| 16 | 15 3 | eqtr4di | ⊢ ( 𝑔 = 𝑊 → ( ·𝑠 ‘ 𝑔 ) = · ) |
| 17 | 16 | sbceq1d | ⊢ ( 𝑔 = 𝑊 → ( [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 18 | 14 17 | sbceqbid | ⊢ ( 𝑔 = 𝑊 → ( [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ 𝐹 / 𝑓 ] [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 19 | 12 18 | sbceqbid | ⊢ ( 𝑔 = 𝑊 → ( [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ + / 𝑎 ] [ 𝐹 / 𝑓 ] [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 20 | 10 19 | sbceqbid | ⊢ ( 𝑔 = 𝑊 → ( [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ 𝑉 / 𝑣 ] [ + / 𝑎 ] [ 𝐹 / 𝑓 ] [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 21 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 22 | 2 | fvexi | ⊢ + ∈ V |
| 23 | 4 | fvexi | ⊢ 𝐹 ∈ V |
| 24 | simp3 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) | |
| 25 | 24 | fveq2d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
| 26 | 25 5 | eqtr4di | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑓 ) = 𝐾 ) |
| 27 | 24 | fveq2d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( +g ‘ 𝑓 ) = ( +g ‘ 𝐹 ) ) |
| 28 | 27 6 | eqtr4di | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( +g ‘ 𝑓 ) = ⨣ ) |
| 29 | 24 | fveq2d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( .r ‘ 𝑓 ) = ( .r ‘ 𝐹 ) ) |
| 30 | 29 7 | eqtr4di | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( .r ‘ 𝑓 ) = × ) |
| 31 | 30 | sbceq1d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ × / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 32 | 7 | fvexi | ⊢ × ∈ V |
| 33 | oveq | ⊢ ( 𝑡 = × → ( 𝑞 𝑡 𝑟 ) = ( 𝑞 × 𝑟 ) ) | |
| 34 | 33 | oveq1d | ⊢ ( 𝑡 = × → ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) ) |
| 35 | 34 | eqeq1d | ⊢ ( 𝑡 = × → ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ↔ ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ) ) |
| 36 | 35 | anbi1d | ⊢ ( 𝑡 = × → ( ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 37 | 36 | anbi2d | ⊢ ( 𝑡 = × → ( ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
| 38 | 37 | 2ralbidv | ⊢ ( 𝑡 = × → ( ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
| 39 | 38 | 2ralbidv | ⊢ ( 𝑡 = × → ( ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
| 40 | 39 | anbi2d | ⊢ ( 𝑡 = × → ( ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 41 | 32 40 | sbcie | ⊢ ( [ × / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
| 42 | 24 | eleq1d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( 𝑓 ∈ Ring ↔ 𝐹 ∈ Ring ) ) |
| 43 | simp1 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → 𝑣 = 𝑉 ) | |
| 44 | 43 | eleq2d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ↔ ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ) ) |
| 45 | simp2 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → 𝑎 = + ) | |
| 46 | 45 | oveqd | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( 𝑤 𝑎 𝑥 ) = ( 𝑤 + 𝑥 ) ) |
| 47 | 46 | oveq2d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) ) |
| 48 | 45 | oveqd | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ) |
| 49 | 47 48 | eqeq12d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ↔ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ) ) |
| 50 | 45 | oveqd | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) |
| 51 | 50 | eqeq2d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ↔ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ) |
| 52 | 44 49 51 | 3anbi123d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ↔ ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ) ) |
| 53 | 24 | fveq2d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( 1r ‘ 𝑓 ) = ( 1r ‘ 𝐹 ) ) |
| 54 | 53 8 | eqtr4di | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( 1r ‘ 𝑓 ) = 1 ) |
| 55 | 54 | oveq1d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = ( 1 𝑠 𝑤 ) ) |
| 56 | 55 | eqeq1d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ↔ ( 1 𝑠 𝑤 ) = 𝑤 ) ) |
| 57 | 56 | anbi2d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 58 | 52 57 | anbi12d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
| 59 | 43 58 | raleqbidv | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
| 60 | 43 59 | raleqbidv | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
| 61 | 60 | 2ralbidv | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
| 62 | 42 61 | anbi12d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 63 | 41 62 | bitrid | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ × / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 64 | 31 63 | bitrd | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 65 | 28 64 | sbceqbid | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ ⨣ / 𝑝 ] ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 66 | 26 65 | sbceqbid | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ 𝐾 / 𝑘 ] [ ⨣ / 𝑝 ] ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 67 | 66 | sbcbidv | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ · / 𝑠 ] [ 𝐾 / 𝑘 ] [ ⨣ / 𝑝 ] ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
| 68 | 21 22 23 67 | sbc3ie | ⊢ ( [ 𝑉 / 𝑣 ] [ + / 𝑎 ] [ 𝐹 / 𝑓 ] [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ · / 𝑠 ] [ 𝐾 / 𝑘 ] [ ⨣ / 𝑝 ] ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
| 69 | 3 | fvexi | ⊢ · ∈ V |
| 70 | 5 | fvexi | ⊢ 𝐾 ∈ V |
| 71 | 6 | fvexi | ⊢ ⨣ ∈ V |
| 72 | simp2 | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → 𝑘 = 𝐾 ) | |
| 73 | simp1 | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → 𝑠 = · ) | |
| 74 | 73 | oveqd | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑟 𝑠 𝑤 ) = ( 𝑟 · 𝑤 ) ) |
| 75 | 74 | eleq1d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ↔ ( 𝑟 · 𝑤 ) ∈ 𝑉 ) ) |
| 76 | 73 | oveqd | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( 𝑟 · ( 𝑤 + 𝑥 ) ) ) |
| 77 | 73 | oveqd | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑟 𝑠 𝑥 ) = ( 𝑟 · 𝑥 ) ) |
| 78 | 74 77 | oveq12d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ) |
| 79 | 76 78 | eqeq12d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ↔ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ) ) |
| 80 | simp3 | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → 𝑝 = ⨣ ) | |
| 81 | 80 | oveqd | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑞 𝑝 𝑟 ) = ( 𝑞 ⨣ 𝑟 ) ) |
| 82 | 81 | oveq1d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 ⨣ 𝑟 ) 𝑠 𝑤 ) ) |
| 83 | 73 | oveqd | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑞 ⨣ 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) ) |
| 84 | 82 83 | eqtrd | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) ) |
| 85 | 73 | oveqd | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑞 𝑠 𝑤 ) = ( 𝑞 · 𝑤 ) ) |
| 86 | 85 74 | oveq12d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) |
| 87 | 84 86 | eqeq12d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ↔ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
| 88 | 75 79 87 | 3anbi123d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ↔ ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) ) |
| 89 | 73 | oveqd | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 × 𝑟 ) · 𝑤 ) ) |
| 90 | 74 | oveq2d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) = ( 𝑞 𝑠 ( 𝑟 · 𝑤 ) ) ) |
| 91 | 73 | oveqd | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑞 𝑠 ( 𝑟 · 𝑤 ) ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ) |
| 92 | 90 91 | eqtrd | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ) |
| 93 | 89 92 | eqeq12d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ↔ ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ) ) |
| 94 | 73 | oveqd | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 1 𝑠 𝑤 ) = ( 1 · 𝑤 ) ) |
| 95 | 94 | eqeq1d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 1 𝑠 𝑤 ) = 𝑤 ↔ ( 1 · 𝑤 ) = 𝑤 ) ) |
| 96 | 93 95 | anbi12d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 97 | 88 96 | anbi12d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 98 | 97 | 2ralbidv | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 99 | 72 98 | raleqbidv | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 100 | 72 99 | raleqbidv | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 101 | 100 | anbi2d | ⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) ) |
| 102 | 69 70 71 101 | sbc3ie | ⊢ ( [ · / 𝑠 ] [ 𝐾 / 𝑘 ] [ ⨣ / 𝑝 ] ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 103 | 68 102 | bitri | ⊢ ( [ 𝑉 / 𝑣 ] [ + / 𝑎 ] [ 𝐹 / 𝑓 ] [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 104 | 20 103 | bitrdi | ⊢ ( 𝑔 = 𝑊 → ( [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) ) |
| 105 | df-lmod | ⊢ LMod = { 𝑔 ∈ Grp ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) } | |
| 106 | 104 105 | elrab2 | ⊢ ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) ) |
| 107 | 3anass | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝑊 ∈ Grp ∧ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) ) | |
| 108 | 106 107 | bitr4i | ⊢ ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |