This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc3v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| rspc3v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | ||
| rspc3v.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜓 ) ) | ||
| Assertion | rspc3v | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc3v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | rspc3v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | rspc3v.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜓 ) ) | |
| 4 | 1 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ 𝑇 𝜑 ↔ ∀ 𝑧 ∈ 𝑇 𝜒 ) ) |
| 5 | 2 | ralbidv | ⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑧 ∈ 𝑇 𝜒 ↔ ∀ 𝑧 ∈ 𝑇 𝜃 ) ) |
| 6 | 4 5 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 𝜑 → ∀ 𝑧 ∈ 𝑇 𝜃 ) ) |
| 7 | 3 | rspcv | ⊢ ( 𝐶 ∈ 𝑇 → ( ∀ 𝑧 ∈ 𝑇 𝜃 → 𝜓 ) ) |
| 8 | 6 7 | sylan9 | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑇 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 𝜑 → 𝜓 ) ) |
| 9 | 8 | 3impa | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 𝜑 → 𝜓 ) ) |