This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a function to an unbounded-above interval converges iff the original converges. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimresb.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| rlimresb.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| rlimresb.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| Assertion | rlimresb | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐶 ↔ ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ⇝𝑟 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimresb.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | rlimresb.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 3 | rlimresb.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | rlimcl | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) ) |
| 6 | rlimcl | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) ) |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝐴 ⊆ ℝ ) |
| 9 | simprrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝑥 ∈ 𝐴 ) | |
| 10 | 8 9 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
| 11 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝐵 ∈ ℝ ) |
| 12 | elicopnf | ⊢ ( 𝐵 ∈ ℝ → ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐵 ≤ 𝑧 ) ) ) | |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐵 ≤ 𝑧 ) ) ) |
| 14 | 13 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ∈ ℝ ∧ 𝐵 ≤ 𝑧 ) ) |
| 15 | 14 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → ( 𝑧 ∈ ℝ ∧ 𝐵 ≤ 𝑧 ) ) |
| 16 | 15 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝑧 ∈ ℝ ) |
| 17 | 15 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝐵 ≤ 𝑧 ) |
| 18 | simprrr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝑧 ≤ 𝑥 ) | |
| 19 | 11 16 10 17 18 | letrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝐵 ≤ 𝑥 ) |
| 20 | elicopnf | ⊢ ( 𝐵 ∈ ℝ → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ) ) ) | |
| 21 | 11 20 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ) ) ) |
| 22 | 10 19 21 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐵 [,) +∞ ) ) |
| 23 | 22 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) → 𝑥 ∈ ( 𝐵 [,) +∞ ) ) |
| 24 | 23 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ≤ 𝑥 ) → 𝑥 ∈ ( 𝐵 [,) +∞ ) ) |
| 25 | biimt | ⊢ ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ↔ ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ≤ 𝑥 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ↔ ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 27 | 26 | pm5.74da | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ( 𝑧 ≤ 𝑥 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
| 28 | bi2.04 | ⊢ ( ( 𝑧 ≤ 𝑥 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) | |
| 29 | 27 28 | bitrdi | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
| 30 | 29 | pm5.74da | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) ) |
| 31 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 [,) +∞ ) ) ) | |
| 32 | 31 | imbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 33 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) | |
| 34 | 32 33 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
| 35 | 30 34 | bitr4di | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
| 36 | 35 | ralbidv2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 37 | 36 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 38 | 37 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 40 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 41 | 40 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 43 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐴 ⊆ ℝ ) |
| 44 | simpr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 45 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℝ ) |
| 46 | 42 43 44 45 | rlim3 | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 47 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → 𝑥 ∈ 𝐴 ) | |
| 48 | 47 40 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 49 | 48 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 51 | inss1 | ⊢ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ⊆ 𝐴 | |
| 52 | 51 2 | sstrid | ⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ⊆ ℝ ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ⊆ ℝ ) |
| 54 | 50 53 44 45 | rlim3 | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 55 | 39 46 54 | 3bitr4d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ) ) |
| 56 | 55 | ex | ⊢ ( 𝜑 → ( 𝐶 ∈ ℂ → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ) ) ) |
| 57 | 5 7 56 | pm5.21ndd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ) ) |
| 58 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 59 | 58 | breq1d | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ) ) |
| 60 | resres | ⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐵 [,) +∞ ) ) = ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) | |
| 61 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → 𝐹 Fn 𝐴 ) | |
| 62 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 63 | 1 61 62 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 64 | 63 | reseq1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐵 [,) +∞ ) ) = ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ) |
| 65 | 58 | reseq1d | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) ) |
| 66 | resmpt | ⊢ ( ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 67 | 51 66 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 68 | 65 67 | eqtrdi | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 69 | 60 64 68 | 3eqtr3a | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 70 | 69 | breq1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ) ) |
| 71 | 57 59 70 | 3bitr4d | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐶 ↔ ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ⇝𝑟 𝐶 ) ) |