This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restrict the range of the domain bound to reals greater than some D e. RR . (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlim2.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) | |
| rlim2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| rlim2.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| rlim3.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| Assertion | rlim3 | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlim2.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) | |
| 2 | rlim2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 3 | rlim2.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | rlim3.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | 1 2 3 | rlim2 | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ ) | |
| 7 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝐷 ∈ ℝ ) |
| 8 | 6 7 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ℝ ) |
| 9 | max1 | ⊢ ( ( 𝐷 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → 𝐷 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) | |
| 10 | 4 9 | sylan | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝐷 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) |
| 11 | elicopnf | ⊢ ( 𝐷 ∈ ℝ → ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ( 𝐷 [,) +∞ ) ↔ ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ℝ ∧ 𝐷 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) ) ) | |
| 12 | 7 11 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ( 𝐷 [,) +∞ ) ↔ ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ℝ ∧ 𝐷 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) ) ) |
| 13 | 8 10 12 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ( 𝐷 [,) +∞ ) ) |
| 14 | 2 4 | jca | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ) |
| 15 | max2 | ⊢ ( ( 𝐷 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → 𝑤 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) | |
| 16 | 15 | ad4ant23 | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑤 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) |
| 17 | simplr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) | |
| 18 | simpllr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝐷 ∈ ℝ ) | |
| 19 | 17 18 | ifcld | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ℝ ) |
| 20 | simpll | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 21 | 20 | sselda | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
| 22 | letr | ⊢ ( ( 𝑤 ∈ ℝ ∧ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑤 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∧ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 ) → 𝑤 ≤ 𝑧 ) ) | |
| 23 | 17 19 21 22 | syl3anc | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑤 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∧ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 ) → 𝑤 ≤ 𝑧 ) ) |
| 24 | 16 23 | mpand | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 → 𝑤 ≤ 𝑧 ) ) |
| 25 | 24 | imim1d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 26 | 25 | ralimdva | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑧 ∈ 𝐴 ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 27 | 14 26 | sylan | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑧 ∈ 𝐴 ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 28 | breq1 | ⊢ ( 𝑦 = if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) → ( 𝑦 ≤ 𝑧 ↔ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 ) ) | |
| 29 | 28 | rspceaimv | ⊢ ( ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ( 𝐷 [,) +∞ ) ∧ ∀ 𝑧 ∈ 𝐴 ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) |
| 30 | 13 27 29 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 31 | 30 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 32 | 31 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 33 | 5 32 | sylbid | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 34 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 35 | icossre | ⊢ ( ( 𝐷 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝐷 [,) +∞ ) ⊆ ℝ ) | |
| 36 | 4 34 35 | sylancl | ⊢ ( 𝜑 → ( 𝐷 [,) +∞ ) ⊆ ℝ ) |
| 37 | ssrexv | ⊢ ( ( 𝐷 [,) +∞ ) ⊆ ℝ → ( ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) | |
| 38 | 36 37 | syl | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 39 | 38 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 40 | 1 2 3 | rlim2 | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 41 | 39 40 | sylibrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) ) |
| 42 | 33 41 | impbid | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |