This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a function to an unbounded-above interval is eventually bounded iff the original is eventually bounded. (Contributed by Mario Carneiro, 9-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimresb.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| rlimresb.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| rlimresb.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| Assertion | o1resb | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑂(1) ↔ ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ∈ 𝑂(1) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimresb.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | rlimresb.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 3 | rlimresb.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | o1res | ⊢ ( 𝐹 ∈ 𝑂(1) → ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ∈ 𝑂(1) ) | |
| 5 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 6 | 5 | reseq1d | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐵 [,) +∞ ) ) ) |
| 7 | resmpt3 | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐵 [,) +∞ ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) | |
| 8 | 6 7 | eqtrdi | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 9 | 8 | eleq1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝑂(1) ) ) |
| 10 | inss1 | ⊢ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ⊆ 𝐴 | |
| 11 | 10 2 | sstrid | ⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ⊆ ℝ ) |
| 12 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → 𝑥 ∈ 𝐴 ) | |
| 13 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) | |
| 14 | 1 12 13 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 15 | 11 14 | elo1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ) |
| 16 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 [,) +∞ ) ) ) | |
| 17 | 16 | imbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 [,) +∞ ) ) → ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ) |
| 18 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 [,) +∞ ) ) → ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ) ) | |
| 19 | 17 18 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ) ) |
| 20 | impexp | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 [,) +∞ ) ∧ 𝑦 ≤ 𝑥 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ↔ ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ) | |
| 21 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 22 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → 𝐴 ⊆ ℝ ) |
| 23 | 22 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 24 | elicopnf | ⊢ ( 𝐵 ∈ ℝ → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ) ) ) | |
| 25 | 24 | baibd | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) ↔ 𝐵 ≤ 𝑥 ) ) |
| 26 | 21 23 25 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) ↔ 𝐵 ≤ 𝑥 ) ) |
| 27 | 26 | anbi1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐵 [,) +∞ ) ∧ 𝑦 ≤ 𝑥 ) ↔ ( 𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥 ) ) ) |
| 28 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 29 | maxle | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ≤ 𝑥 ↔ ( 𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥 ) ) ) | |
| 30 | 21 28 23 29 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ≤ 𝑥 ↔ ( 𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥 ) ) ) |
| 31 | 27 30 | bitr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐵 [,) +∞ ) ∧ 𝑦 ≤ 𝑥 ) ↔ if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ≤ 𝑥 ) ) |
| 32 | 31 | imbi1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ ( 𝐵 [,) +∞ ) ∧ 𝑦 ≤ 𝑥 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ↔ ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ) |
| 33 | 20 32 | bitr3id | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ↔ ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ) |
| 34 | 33 | pm5.74da | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ) ↔ ( 𝑥 ∈ 𝐴 → ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ) ) |
| 35 | 19 34 | bitrid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ) ) |
| 36 | 35 | ralbidv2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) ) |
| 37 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 38 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → 𝑦 ∈ ℝ ) | |
| 39 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) |
| 40 | 38 39 | ifcld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ∈ ℝ ) |
| 41 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → 𝑧 ∈ ℝ ) | |
| 42 | elo12r | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) ) → 𝐹 ∈ 𝑂(1) ) | |
| 43 | 42 | 3expia | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) → 𝐹 ∈ 𝑂(1) ) ) |
| 44 | 37 22 40 41 43 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( if ( 𝐵 ≤ 𝑦 , 𝑦 , 𝐵 ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) → 𝐹 ∈ 𝑂(1) ) ) |
| 45 | 36 44 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) → 𝐹 ∈ 𝑂(1) ) ) |
| 46 | 45 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑧 ) → 𝐹 ∈ 𝑂(1) ) ) |
| 47 | 15 46 | sylbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝑂(1) → 𝐹 ∈ 𝑂(1) ) ) |
| 48 | 9 47 | sylbid | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ∈ 𝑂(1) → 𝐹 ∈ 𝑂(1) ) ) |
| 49 | 4 48 | impbid2 | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑂(1) ↔ ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ∈ 𝑂(1) ) ) |