This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmunitinv | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) = ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) | |
| 2 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 6 | 2 3 4 5 | unitlinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ( .r ‘ 𝑅 ) 𝐴 ) = ( 1r ‘ 𝑅 ) ) |
| 7 | 1 6 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ( .r ‘ 𝑅 ) 𝐴 ) = ( 1r ‘ 𝑅 ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ( .r ‘ 𝑅 ) 𝐴 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 9 | simpl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | 10 2 | unitss | ⊢ ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) |
| 12 | 2 3 | unitinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 13 | 1 12 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 14 | 11 13 | sselid | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝑅 ) ) |
| 15 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → 𝐴 ∈ ( Unit ‘ 𝑅 ) ) | |
| 16 | 11 15 | sselid | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 17 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 18 | 10 4 17 | rhmmul | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝐴 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 19 | 9 14 16 18 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ( .r ‘ 𝑅 ) 𝐴 ) ) = ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 20 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 21 | 5 20 | rhm1 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 23 | 8 19 22 | 3eqtr3d | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 1r ‘ 𝑆 ) ) |
| 24 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → 𝑆 ∈ Ring ) |
| 26 | elrhmunit | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑆 ) ) | |
| 27 | eqid | ⊢ ( Unit ‘ 𝑆 ) = ( Unit ‘ 𝑆 ) | |
| 28 | eqid | ⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) | |
| 29 | 27 28 17 20 | unitlinv | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑆 ) ) → ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 1r ‘ 𝑆 ) ) |
| 30 | 25 26 29 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( 1r ‘ 𝑆 ) ) |
| 31 | 23 30 | eqtr4d | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 32 | eqid | ⊢ ( ( mulGrp ‘ 𝑆 ) ↾s ( Unit ‘ 𝑆 ) ) = ( ( mulGrp ‘ 𝑆 ) ↾s ( Unit ‘ 𝑆 ) ) | |
| 33 | 27 32 | unitgrp | ⊢ ( 𝑆 ∈ Ring → ( ( mulGrp ‘ 𝑆 ) ↾s ( Unit ‘ 𝑆 ) ) ∈ Grp ) |
| 34 | 24 33 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( mulGrp ‘ 𝑆 ) ↾s ( Unit ‘ 𝑆 ) ) ∈ Grp ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( mulGrp ‘ 𝑆 ) ↾s ( Unit ‘ 𝑆 ) ) ∈ Grp ) |
| 36 | elrhmunit | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) ∈ ( Unit ‘ 𝑆 ) ) | |
| 37 | 13 36 | syldan | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) ∈ ( Unit ‘ 𝑆 ) ) |
| 38 | 27 28 | unitinvcl | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑆 ) ) → ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ( Unit ‘ 𝑆 ) ) |
| 39 | 25 26 38 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ( Unit ‘ 𝑆 ) ) |
| 40 | 27 32 | unitgrpbas | ⊢ ( Unit ‘ 𝑆 ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↾s ( Unit ‘ 𝑆 ) ) ) |
| 41 | fvex | ⊢ ( Unit ‘ 𝑆 ) ∈ V | |
| 42 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 43 | 42 17 | mgpplusg | ⊢ ( .r ‘ 𝑆 ) = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 44 | 32 43 | ressplusg | ⊢ ( ( Unit ‘ 𝑆 ) ∈ V → ( .r ‘ 𝑆 ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↾s ( Unit ‘ 𝑆 ) ) ) ) |
| 45 | 41 44 | ax-mp | ⊢ ( .r ‘ 𝑆 ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↾s ( Unit ‘ 𝑆 ) ) ) |
| 46 | 40 45 | grprcan | ⊢ ( ( ( ( mulGrp ‘ 𝑆 ) ↾s ( Unit ‘ 𝑆 ) ) ∈ Grp ∧ ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) ∈ ( Unit ‘ 𝑆 ) ∧ ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ∈ ( Unit ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑆 ) ) ) → ( ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ↔ ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) = ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 47 | 35 37 39 26 46 | syl13anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) = ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝐴 ) ) ↔ ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) = ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 48 | 31 47 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝐴 ) ) = ( ( invr ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝐴 ) ) ) |