This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmunitinv | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` ( ( invr ` R ) ` A ) ) = ( ( invr ` S ) ` ( F ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmrcl1 | |- ( F e. ( R RingHom S ) -> R e. Ring ) |
|
| 2 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 3 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 5 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 6 | 2 3 4 5 | unitlinv | |- ( ( R e. Ring /\ A e. ( Unit ` R ) ) -> ( ( ( invr ` R ) ` A ) ( .r ` R ) A ) = ( 1r ` R ) ) |
| 7 | 1 6 | sylan | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( ( invr ` R ) ` A ) ( .r ` R ) A ) = ( 1r ` R ) ) |
| 8 | 7 | fveq2d | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` ( ( ( invr ` R ) ` A ) ( .r ` R ) A ) ) = ( F ` ( 1r ` R ) ) ) |
| 9 | simpl | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> F e. ( R RingHom S ) ) |
|
| 10 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 11 | 10 2 | unitss | |- ( Unit ` R ) C_ ( Base ` R ) |
| 12 | 2 3 | unitinvcl | |- ( ( R e. Ring /\ A e. ( Unit ` R ) ) -> ( ( invr ` R ) ` A ) e. ( Unit ` R ) ) |
| 13 | 1 12 | sylan | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( invr ` R ) ` A ) e. ( Unit ` R ) ) |
| 14 | 11 13 | sselid | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( invr ` R ) ` A ) e. ( Base ` R ) ) |
| 15 | simpr | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> A e. ( Unit ` R ) ) |
|
| 16 | 11 15 | sselid | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> A e. ( Base ` R ) ) |
| 17 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 18 | 10 4 17 | rhmmul | |- ( ( F e. ( R RingHom S ) /\ ( ( invr ` R ) ` A ) e. ( Base ` R ) /\ A e. ( Base ` R ) ) -> ( F ` ( ( ( invr ` R ) ` A ) ( .r ` R ) A ) ) = ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) ) |
| 19 | 9 14 16 18 | syl3anc | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` ( ( ( invr ` R ) ` A ) ( .r ` R ) A ) ) = ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) ) |
| 20 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 21 | 5 20 | rhm1 | |- ( F e. ( R RingHom S ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 22 | 21 | adantr | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 23 | 8 19 22 | 3eqtr3d | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) = ( 1r ` S ) ) |
| 24 | rhmrcl2 | |- ( F e. ( R RingHom S ) -> S e. Ring ) |
|
| 25 | 24 | adantr | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> S e. Ring ) |
| 26 | elrhmunit | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` A ) e. ( Unit ` S ) ) |
|
| 27 | eqid | |- ( Unit ` S ) = ( Unit ` S ) |
|
| 28 | eqid | |- ( invr ` S ) = ( invr ` S ) |
|
| 29 | 27 28 17 20 | unitlinv | |- ( ( S e. Ring /\ ( F ` A ) e. ( Unit ` S ) ) -> ( ( ( invr ` S ) ` ( F ` A ) ) ( .r ` S ) ( F ` A ) ) = ( 1r ` S ) ) |
| 30 | 25 26 29 | syl2anc | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( ( invr ` S ) ` ( F ` A ) ) ( .r ` S ) ( F ` A ) ) = ( 1r ` S ) ) |
| 31 | 23 30 | eqtr4d | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) = ( ( ( invr ` S ) ` ( F ` A ) ) ( .r ` S ) ( F ` A ) ) ) |
| 32 | eqid | |- ( ( mulGrp ` S ) |`s ( Unit ` S ) ) = ( ( mulGrp ` S ) |`s ( Unit ` S ) ) |
|
| 33 | 27 32 | unitgrp | |- ( S e. Ring -> ( ( mulGrp ` S ) |`s ( Unit ` S ) ) e. Grp ) |
| 34 | 24 33 | syl | |- ( F e. ( R RingHom S ) -> ( ( mulGrp ` S ) |`s ( Unit ` S ) ) e. Grp ) |
| 35 | 34 | adantr | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( mulGrp ` S ) |`s ( Unit ` S ) ) e. Grp ) |
| 36 | elrhmunit | |- ( ( F e. ( R RingHom S ) /\ ( ( invr ` R ) ` A ) e. ( Unit ` R ) ) -> ( F ` ( ( invr ` R ) ` A ) ) e. ( Unit ` S ) ) |
|
| 37 | 13 36 | syldan | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` ( ( invr ` R ) ` A ) ) e. ( Unit ` S ) ) |
| 38 | 27 28 | unitinvcl | |- ( ( S e. Ring /\ ( F ` A ) e. ( Unit ` S ) ) -> ( ( invr ` S ) ` ( F ` A ) ) e. ( Unit ` S ) ) |
| 39 | 25 26 38 | syl2anc | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( invr ` S ) ` ( F ` A ) ) e. ( Unit ` S ) ) |
| 40 | 27 32 | unitgrpbas | |- ( Unit ` S ) = ( Base ` ( ( mulGrp ` S ) |`s ( Unit ` S ) ) ) |
| 41 | fvex | |- ( Unit ` S ) e. _V |
|
| 42 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 43 | 42 17 | mgpplusg | |- ( .r ` S ) = ( +g ` ( mulGrp ` S ) ) |
| 44 | 32 43 | ressplusg | |- ( ( Unit ` S ) e. _V -> ( .r ` S ) = ( +g ` ( ( mulGrp ` S ) |`s ( Unit ` S ) ) ) ) |
| 45 | 41 44 | ax-mp | |- ( .r ` S ) = ( +g ` ( ( mulGrp ` S ) |`s ( Unit ` S ) ) ) |
| 46 | 40 45 | grprcan | |- ( ( ( ( mulGrp ` S ) |`s ( Unit ` S ) ) e. Grp /\ ( ( F ` ( ( invr ` R ) ` A ) ) e. ( Unit ` S ) /\ ( ( invr ` S ) ` ( F ` A ) ) e. ( Unit ` S ) /\ ( F ` A ) e. ( Unit ` S ) ) ) -> ( ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) = ( ( ( invr ` S ) ` ( F ` A ) ) ( .r ` S ) ( F ` A ) ) <-> ( F ` ( ( invr ` R ) ` A ) ) = ( ( invr ` S ) ` ( F ` A ) ) ) ) |
| 47 | 35 37 39 26 46 | syl13anc | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( ( F ` ( ( invr ` R ) ` A ) ) ( .r ` S ) ( F ` A ) ) = ( ( ( invr ` S ) ` ( F ` A ) ) ( .r ` S ) ( F ` A ) ) <-> ( F ` ( ( invr ` R ) ` A ) ) = ( ( invr ` S ) ` ( F ` A ) ) ) ) |
| 48 | 31 47 | mpbid | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` ( ( invr ` R ) ` A ) ) = ( ( invr ` S ) ` ( F ` A ) ) ) |