This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrhmunit | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 4 | 2 3 | unitss | ⊢ ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) |
| 5 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → 𝐴 ∈ ( Unit ‘ 𝑅 ) ) | |
| 6 | 4 5 | sselid | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 7 | rhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) | |
| 8 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 9 | 2 8 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 10 | 1 7 9 | 3syl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 11 | eqid | ⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) | |
| 14 | 3 8 11 12 13 | isunit | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝐴 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝐴 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 15 | 5 14 | sylib | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐴 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝐴 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 16 | 15 | simpld | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → 𝐴 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 17 | eqid | ⊢ ( ∥r ‘ 𝑆 ) = ( ∥r ‘ 𝑆 ) | |
| 18 | 2 11 17 | rhmdvdsr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ∧ 𝐴 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 19 | 1 6 10 16 18 | syl31anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 20 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 21 | 8 20 | rhm1 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 22 | 21 | breq2d | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ↔ ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ↔ ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
| 24 | 19 23 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) |
| 25 | rhmopp | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( oppr ‘ 𝑅 ) RingHom ( oppr ‘ 𝑆 ) ) ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → 𝐹 ∈ ( ( oppr ‘ 𝑅 ) RingHom ( oppr ‘ 𝑆 ) ) ) |
| 27 | 15 | simprd | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → 𝐴 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 28 | 12 2 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 29 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑆 ) ) = ( ∥r ‘ ( oppr ‘ 𝑆 ) ) | |
| 30 | 28 13 29 | rhmdvdsr | ⊢ ( ( ( 𝐹 ∈ ( ( oppr ‘ 𝑅 ) RingHom ( oppr ‘ 𝑆 ) ) ∧ 𝐴 ∈ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ∧ 𝐴 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 31 | 26 6 10 27 30 | syl31anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 32 | 21 | breq2d | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ↔ ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ↔ ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) ) |
| 34 | 31 33 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) |
| 35 | eqid | ⊢ ( Unit ‘ 𝑆 ) = ( Unit ‘ 𝑆 ) | |
| 36 | eqid | ⊢ ( oppr ‘ 𝑆 ) = ( oppr ‘ 𝑆 ) | |
| 37 | 35 20 17 36 29 | isunit | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑆 ) ↔ ( ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝐴 ) ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) ) |
| 38 | 24 34 37 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑆 ) ) |