This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of non-unital rings. (Contributed by AV, 12-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsubcrngc.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| rhmsubcrngc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| rhmsubcrngc.b | ⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) | ||
| rhmsubcrngc.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| Assertion | rhmsubcrngc | ⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 2 | rhmsubcrngc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | rhmsubcrngc.b | ⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rhmsubcrngc.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 5 | eqid | ⊢ ( RngCat ‘ 𝑈 ) = ( RngCat ‘ 𝑈 ) | |
| 6 | eqid | ⊢ ( Base ‘ ( RngCat ‘ 𝑈 ) ) = ( Base ‘ ( RngCat ‘ 𝑈 ) ) | |
| 7 | 5 6 2 | rngcbas | ⊢ ( 𝜑 → ( Base ‘ ( RngCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Rng ) ) |
| 8 | incom | ⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) | |
| 9 | 7 8 | eqtrdi | ⊢ ( 𝜑 → ( Base ‘ ( RngCat ‘ 𝑈 ) ) = ( Rng ∩ 𝑈 ) ) |
| 10 | 2 3 9 | rhmsscrnghm | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ⊆cat ( RngHom ↾ ( ( Base ‘ ( RngCat ‘ 𝑈 ) ) × ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) ) ) |
| 11 | 1 | a1i | ⊢ ( 𝜑 → 𝐶 = ( RngCat ‘ 𝑈 ) ) |
| 12 | 11 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) |
| 13 | 12 | sqxpeqd | ⊢ ( 𝜑 → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) = ( ( Base ‘ ( RngCat ‘ 𝑈 ) ) × ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) ) |
| 14 | 13 | reseq2d | ⊢ ( 𝜑 → ( RngHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) = ( RngHom ↾ ( ( Base ‘ ( RngCat ‘ 𝑈 ) ) × ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) ) ) |
| 15 | 10 14 | breqtrrd | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ⊆cat ( RngHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 17 | 1 16 2 | rngchomfeqhom | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
| 18 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 19 | 1 16 2 18 | rngchomfval | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( RngHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 20 | 17 19 | eqtrd | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( RngHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 21 | 15 4 20 | 3brtr4d | ⊢ ( 𝜑 → 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ) |
| 22 | 1 2 3 4 | rhmsubcrngclem1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |
| 23 | 1 2 3 4 | rhmsubcrngclem2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 24 | 22 23 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
| 25 | 24 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
| 26 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 27 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 28 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 29 | 1 | rngccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 30 | 2 29 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 31 | incom | ⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) | |
| 32 | 3 31 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
| 33 | 32 4 | rhmresfn | ⊢ ( 𝜑 → 𝐻 Fn ( 𝐵 × 𝐵 ) ) |
| 34 | 26 27 28 30 33 | issubc2 | ⊢ ( 𝜑 → ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) ) |
| 35 | 21 25 34 | mpbir2and | ⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |