This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for rhmsubcrngc . (Contributed by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsubcrngc.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| rhmsubcrngc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| rhmsubcrngc.b | ⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) | ||
| rhmsubcrngc.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| Assertion | rhmsubcrngclem1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 2 | rhmsubcrngc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | rhmsubcrngc.b | ⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rhmsubcrngc.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 5 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Ring ∩ 𝑈 ) ) ) |
| 6 | elin | ⊢ ( 𝑥 ∈ ( Ring ∩ 𝑈 ) ↔ ( 𝑥 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ) | |
| 7 | 6 | simplbi | ⊢ ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → 𝑥 ∈ Ring ) |
| 8 | 5 7 | biimtrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ Ring ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ Ring ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) | |
| 11 | 10 | idrhm | ⊢ ( 𝑥 ∈ Ring → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 14 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 15 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑈 ∈ 𝑉 ) |
| 16 | ringrng | ⊢ ( 𝑥 ∈ Ring → 𝑥 ∈ Rng ) | |
| 17 | 16 | anim2i | ⊢ ( ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring ) → ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) |
| 18 | 17 | ancoms | ⊢ ( ( 𝑥 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) |
| 19 | 6 18 | sylbi | ⊢ ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Ring ∩ 𝑈 ) ) → ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) |
| 21 | elin | ⊢ ( 𝑥 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Ring ∩ 𝑈 ) ) → 𝑥 ∈ ( 𝑈 ∩ Rng ) ) |
| 23 | 1 13 2 | rngcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Rng ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Ring ∩ 𝑈 ) ) → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Rng ) ) |
| 25 | 22 24 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Ring ∩ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 26 | 25 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) |
| 27 | 5 26 | sylbid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) |
| 28 | 27 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 29 | 1 13 14 15 28 10 | rngcid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) = ( I ↾ ( Base ‘ 𝑥 ) ) ) |
| 30 | 4 | oveqdr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑥 ) ) |
| 31 | eqid | ⊢ ( RingCat ‘ 𝑈 ) = ( RingCat ‘ 𝑈 ) | |
| 32 | eqid | ⊢ ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( Base ‘ ( RingCat ‘ 𝑈 ) ) | |
| 33 | eqid | ⊢ ( Hom ‘ ( RingCat ‘ 𝑈 ) ) = ( Hom ‘ ( RingCat ‘ 𝑈 ) ) | |
| 34 | 31 32 2 33 | ringchomfval | ⊢ ( 𝜑 → ( Hom ‘ ( RingCat ‘ 𝑈 ) ) = ( RingHom ↾ ( ( Base ‘ ( RingCat ‘ 𝑈 ) ) × ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) ) ) |
| 35 | 31 32 2 | ringcbas | ⊢ ( 𝜑 → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) ) |
| 36 | incom | ⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) | |
| 37 | 3 36 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
| 38 | 37 | eqcomd | ⊢ ( 𝜑 → ( 𝑈 ∩ Ring ) = 𝐵 ) |
| 39 | 35 38 | eqtrd | ⊢ ( 𝜑 → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = 𝐵 ) |
| 40 | 39 | sqxpeqd | ⊢ ( 𝜑 → ( ( Base ‘ ( RingCat ‘ 𝑈 ) ) × ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) = ( 𝐵 × 𝐵 ) ) |
| 41 | 40 | reseq2d | ⊢ ( 𝜑 → ( RingHom ↾ ( ( Base ‘ ( RingCat ‘ 𝑈 ) ) × ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) ) = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
| 42 | 34 41 | eqtrd | ⊢ ( 𝜑 → ( Hom ‘ ( RingCat ‘ 𝑈 ) ) = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Hom ‘ ( RingCat ‘ 𝑈 ) ) = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
| 44 | 43 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) = ( Hom ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 45 | 44 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑥 ) = ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑥 ) ) |
| 46 | 37 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( 𝑈 ∩ Ring ) ) ) |
| 47 | 46 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝑈 ∩ Ring ) ) |
| 48 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) ) |
| 49 | 47 48 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 50 | 31 32 15 33 49 49 | ringchom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑥 ) = ( 𝑥 RingHom 𝑥 ) ) |
| 51 | 30 45 50 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 RingHom 𝑥 ) ) |
| 52 | 12 29 51 | 3eltr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |