This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of non-unital rings. (Contributed by AV, 12-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsubcrngc.c | |- C = ( RngCat ` U ) |
|
| rhmsubcrngc.u | |- ( ph -> U e. V ) |
||
| rhmsubcrngc.b | |- ( ph -> B = ( Ring i^i U ) ) |
||
| rhmsubcrngc.h | |- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
||
| Assertion | rhmsubcrngc | |- ( ph -> H e. ( Subcat ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.c | |- C = ( RngCat ` U ) |
|
| 2 | rhmsubcrngc.u | |- ( ph -> U e. V ) |
|
| 3 | rhmsubcrngc.b | |- ( ph -> B = ( Ring i^i U ) ) |
|
| 4 | rhmsubcrngc.h | |- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
|
| 5 | eqid | |- ( RngCat ` U ) = ( RngCat ` U ) |
|
| 6 | eqid | |- ( Base ` ( RngCat ` U ) ) = ( Base ` ( RngCat ` U ) ) |
|
| 7 | 5 6 2 | rngcbas | |- ( ph -> ( Base ` ( RngCat ` U ) ) = ( U i^i Rng ) ) |
| 8 | incom | |- ( U i^i Rng ) = ( Rng i^i U ) |
|
| 9 | 7 8 | eqtrdi | |- ( ph -> ( Base ` ( RngCat ` U ) ) = ( Rng i^i U ) ) |
| 10 | 2 3 9 | rhmsscrnghm | |- ( ph -> ( RingHom |` ( B X. B ) ) C_cat ( RngHom |` ( ( Base ` ( RngCat ` U ) ) X. ( Base ` ( RngCat ` U ) ) ) ) ) |
| 11 | 1 | a1i | |- ( ph -> C = ( RngCat ` U ) ) |
| 12 | 11 | fveq2d | |- ( ph -> ( Base ` C ) = ( Base ` ( RngCat ` U ) ) ) |
| 13 | 12 | sqxpeqd | |- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = ( ( Base ` ( RngCat ` U ) ) X. ( Base ` ( RngCat ` U ) ) ) ) |
| 14 | 13 | reseq2d | |- ( ph -> ( RngHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) = ( RngHom |` ( ( Base ` ( RngCat ` U ) ) X. ( Base ` ( RngCat ` U ) ) ) ) ) |
| 15 | 10 14 | breqtrrd | |- ( ph -> ( RingHom |` ( B X. B ) ) C_cat ( RngHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 16 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 17 | 1 16 2 | rngchomfeqhom | |- ( ph -> ( Homf ` C ) = ( Hom ` C ) ) |
| 18 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 19 | 1 16 2 18 | rngchomfval | |- ( ph -> ( Hom ` C ) = ( RngHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 20 | 17 19 | eqtrd | |- ( ph -> ( Homf ` C ) = ( RngHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 21 | 15 4 20 | 3brtr4d | |- ( ph -> H C_cat ( Homf ` C ) ) |
| 22 | 1 2 3 4 | rhmsubcrngclem1 | |- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) e. ( x H x ) ) |
| 23 | 1 2 3 4 | rhmsubcrngclem2 | |- ( ( ph /\ x e. B ) -> A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) |
| 24 | 22 23 | jca | |- ( ( ph /\ x e. B ) -> ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) |
| 25 | 24 | ralrimiva | |- ( ph -> A. x e. B ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) |
| 26 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 27 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 28 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 29 | 1 | rngccat | |- ( U e. V -> C e. Cat ) |
| 30 | 2 29 | syl | |- ( ph -> C e. Cat ) |
| 31 | incom | |- ( Ring i^i U ) = ( U i^i Ring ) |
|
| 32 | 3 31 | eqtrdi | |- ( ph -> B = ( U i^i Ring ) ) |
| 33 | 32 4 | rhmresfn | |- ( ph -> H Fn ( B X. B ) ) |
| 34 | 26 27 28 30 33 | issubc2 | |- ( ph -> ( H e. ( Subcat ` C ) <-> ( H C_cat ( Homf ` C ) /\ A. x e. B ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) ) ) |
| 35 | 21 25 34 | mpbir2and | |- ( ph -> H e. ( Subcat ` C ) ) |