This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsubcrngc.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| rhmsubcrngc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| rhmsubcrngc.b | ⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) | ||
| rhmsubcrngc.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| Assertion | rngcresringcat | ⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐻 ) = ( RingCat ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 2 | rhmsubcrngc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | rhmsubcrngc.b | ⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rhmsubcrngc.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) = ( 𝑈 ∩ Rng ) ) | |
| 6 | eqidd | ⊢ ( 𝜑 → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) = ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) | |
| 7 | eqidd | ⊢ ( 𝜑 → ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ) | |
| 8 | 1 2 5 6 7 | dfrngc2 | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , ( 𝑈 ∩ Rng ) 〉 , 〈 ( Hom ‘ ndx ) , ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 〉 } ) |
| 9 | inex1g | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Rng ) ∈ V ) | |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) ∈ V ) |
| 11 | rnghmfn | ⊢ RngHom Fn ( Rng × Rng ) | |
| 12 | fnfun | ⊢ ( RngHom Fn ( Rng × Rng ) → Fun RngHom ) | |
| 13 | 11 12 | mp1i | ⊢ ( 𝜑 → Fun RngHom ) |
| 14 | sqxpexg | ⊢ ( ( 𝑈 ∩ Rng ) ∈ V → ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ∈ V ) | |
| 15 | 10 14 | syl | ⊢ ( 𝜑 → ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ∈ V ) |
| 16 | resfunexg | ⊢ ( ( Fun RngHom ∧ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ∈ V ) → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ∈ V ) | |
| 17 | 13 15 16 | syl2anc | ⊢ ( 𝜑 → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ∈ V ) |
| 18 | fvexd | ⊢ ( 𝜑 → ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ∈ V ) | |
| 19 | rhmfn | ⊢ RingHom Fn ( Ring × Ring ) | |
| 20 | fnfun | ⊢ ( RingHom Fn ( Ring × Ring ) → Fun RingHom ) | |
| 21 | 19 20 | mp1i | ⊢ ( 𝜑 → Fun RingHom ) |
| 22 | incom | ⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) | |
| 23 | 3 22 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
| 24 | inex1g | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Ring ) ∈ V ) | |
| 25 | 2 24 | syl | ⊢ ( 𝜑 → ( 𝑈 ∩ Ring ) ∈ V ) |
| 26 | 23 25 | eqeltrd | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 27 | sqxpexg | ⊢ ( 𝐵 ∈ V → ( 𝐵 × 𝐵 ) ∈ V ) | |
| 28 | 26 27 | syl | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) ∈ V ) |
| 29 | resfunexg | ⊢ ( ( Fun RingHom ∧ ( 𝐵 × 𝐵 ) ∈ V ) → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ∈ V ) | |
| 30 | 21 28 29 | syl2anc | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ∈ V ) |
| 31 | 4 30 | eqeltrd | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 32 | ringrng | ⊢ ( 𝑟 ∈ Ring → 𝑟 ∈ Rng ) | |
| 33 | 32 | a1i | ⊢ ( 𝜑 → ( 𝑟 ∈ Ring → 𝑟 ∈ Rng ) ) |
| 34 | 33 | ssrdv | ⊢ ( 𝜑 → Ring ⊆ Rng ) |
| 35 | 34 | ssrind | ⊢ ( 𝜑 → ( Ring ∩ 𝑈 ) ⊆ ( Rng ∩ 𝑈 ) ) |
| 36 | incom | ⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) | |
| 37 | 36 | a1i | ⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) ) |
| 38 | 35 3 37 | 3sstr4d | ⊢ ( 𝜑 → 𝐵 ⊆ ( 𝑈 ∩ Rng ) ) |
| 39 | 8 10 17 18 31 38 | estrres | ⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝐵 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 〉 } ) |
| 40 | eqid | ⊢ ( 𝐶 ↾cat 𝐻 ) = ( 𝐶 ↾cat 𝐻 ) | |
| 41 | fvexd | ⊢ ( 𝜑 → ( RngCat ‘ 𝑈 ) ∈ V ) | |
| 42 | 1 41 | eqeltrid | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 43 | 23 4 | rhmresfn | ⊢ ( 𝜑 → 𝐻 Fn ( 𝐵 × 𝐵 ) ) |
| 44 | 40 42 26 43 | rescval2 | ⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐻 ) = ( ( 𝐶 ↾s 𝐵 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 45 | eqid | ⊢ ( RingCat ‘ 𝑈 ) = ( RingCat ‘ 𝑈 ) | |
| 46 | 45 2 23 4 7 | dfringc2 | ⊢ ( 𝜑 → ( RingCat ‘ 𝑈 ) = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 〉 } ) |
| 47 | 39 44 46 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐻 ) = ( RingCat ‘ 𝑈 ) ) |