This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for rhmsubcrngc . (Contributed by AV, 12-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsubcrngc.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| rhmsubcrngc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| rhmsubcrngc.b | ⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) | ||
| rhmsubcrngc.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| Assertion | rhmsubcrngclem2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 2 | rhmsubcrngc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | rhmsubcrngc.b | ⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rhmsubcrngc.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 5 | simpl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝜑 ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝜑 ) |
| 7 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) | |
| 8 | 7 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) |
| 9 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) | |
| 10 | 4 | rhmresel | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) |
| 11 | 6 8 9 10 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 13 | simpl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 14 | 12 13 | anim12i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 16 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) | |
| 17 | 4 | rhmresel | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) |
| 18 | 6 15 16 17 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) |
| 19 | rhmco | ⊢ ( ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ∧ 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) | |
| 20 | 11 18 19 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
| 21 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑈 ∈ 𝑉 ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑈 ∈ 𝑉 ) |
| 23 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 24 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Ring ∩ 𝑈 ) ) ) |
| 25 | elinel2 | ⊢ ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → 𝑥 ∈ 𝑈 ) | |
| 26 | 24 25 | biimtrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈 ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 ∈ 𝑈 ) |
| 29 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Ring ∩ 𝑈 ) ) ) |
| 30 | elinel2 | ⊢ ( 𝑦 ∈ ( Ring ∩ 𝑈 ) → 𝑦 ∈ 𝑈 ) | |
| 31 | 29 30 | biimtrdi | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) |
| 33 | 32 | com12 | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑦 ∈ 𝑈 ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑦 ∈ 𝑈 ) ) |
| 35 | 34 | impcom | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝑈 ) |
| 36 | 35 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑦 ∈ 𝑈 ) |
| 37 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( Ring ∩ 𝑈 ) ) ) |
| 38 | elinel2 | ⊢ ( 𝑧 ∈ ( Ring ∩ 𝑈 ) → 𝑧 ∈ 𝑈 ) | |
| 39 | 37 38 | biimtrdi | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈 ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈 ) ) |
| 41 | 40 | adantld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝑈 ) ) |
| 42 | 41 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝑈 ) |
| 43 | 42 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝑈 ) |
| 44 | simprl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) → 𝜑 ) | |
| 45 | 44 | adantr | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝜑 ) |
| 46 | 12 | anim1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 47 | 46 | ancoms | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 49 | simpr | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) | |
| 50 | 45 48 49 17 | syl3anc | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) |
| 51 | eqid | ⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) | |
| 52 | eqid | ⊢ ( Base ‘ 𝑦 ) = ( Base ‘ 𝑦 ) | |
| 53 | 51 52 | rhmf | ⊢ ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 54 | 50 53 | syl | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 55 | 54 | exp31 | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) |
| 56 | 55 | adantr | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) |
| 57 | 56 | impcom | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 58 | 57 | com12 | ⊢ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 60 | 59 | impcom | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 61 | 10 | 3expa | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) |
| 62 | eqid | ⊢ ( Base ‘ 𝑧 ) = ( Base ‘ 𝑧 ) | |
| 63 | 52 62 | rhmf | ⊢ ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 64 | 61 63 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 65 | 64 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 66 | 65 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 67 | 66 | adantld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 68 | 67 | imp | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 69 | 1 22 23 28 36 43 60 68 | rngcco | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
| 70 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
| 71 | 70 | oveqdr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑧 ) ) |
| 72 | ovres | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) | |
| 73 | 72 | ad2ant2l | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 74 | 71 73 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 75 | 74 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 76 | 20 69 75 | 3eltr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 77 | 76 | ralrimivva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 78 | 77 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |