This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of unital ring homomorphisms restricted to subsets of unital rings is a function. (Contributed by AV, 10-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmresfn.b | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) | |
| rhmresfn.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| Assertion | rhmresfn | ⊢ ( 𝜑 → 𝐻 Fn ( 𝐵 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmresfn.b | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) | |
| 2 | rhmresfn.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 3 | rhmfn | ⊢ RingHom Fn ( Ring × Ring ) | |
| 4 | inss2 | ⊢ ( 𝑈 ∩ Ring ) ⊆ Ring | |
| 5 | 1 4 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ Ring ) |
| 6 | xpss12 | ⊢ ( ( 𝐵 ⊆ Ring ∧ 𝐵 ⊆ Ring ) → ( 𝐵 × 𝐵 ) ⊆ ( Ring × Ring ) ) | |
| 7 | 5 5 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) ⊆ ( Ring × Ring ) ) |
| 8 | fnssres | ⊢ ( ( RingHom Fn ( Ring × Ring ) ∧ ( 𝐵 × 𝐵 ) ⊆ ( Ring × Ring ) ) → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) | |
| 9 | 3 7 8 | sylancr | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) |
| 10 | 2 | fneq1d | ⊢ ( 𝜑 → ( 𝐻 Fn ( 𝐵 × 𝐵 ) ↔ ( RingHom ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) ) |
| 11 | 9 10 | mpbird | ⊢ ( 𝜑 → 𝐻 Fn ( 𝐵 × 𝐵 ) ) |