This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexanuz | ⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) | |
| 2 | 1 | rexbii | ⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑗 ∈ ℤ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
| 3 | r19.40 | ⊢ ( ∃ 𝑗 ∈ ℤ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) | |
| 4 | 2 3 | sylbi | ⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
| 5 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 6 | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) | |
| 7 | raleq | ⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ 𝑥 𝜑 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) | |
| 8 | 7 | rexrn | ⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑥 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑥 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| 9 | 5 6 8 | mp2b | ⊢ ( ∃ 𝑥 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑥 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
| 10 | raleq | ⊢ ( 𝑦 = ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ 𝑦 𝜓 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) | |
| 11 | 10 | rexrn | ⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
| 12 | 5 6 11 | mp2b | ⊢ ( ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) |
| 13 | uzin2 | ⊢ ( ( 𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥ ) → ( 𝑥 ∩ 𝑦 ) ∈ ran ℤ≥ ) | |
| 14 | inss1 | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 | |
| 15 | ssralv | ⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 → ( ∀ 𝑘 ∈ 𝑥 𝜑 → ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜑 ) ) | |
| 16 | 14 15 | ax-mp | ⊢ ( ∀ 𝑘 ∈ 𝑥 𝜑 → ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜑 ) |
| 17 | inss2 | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑦 | |
| 18 | ssralv | ⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝑦 → ( ∀ 𝑘 ∈ 𝑦 𝜓 → ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜓 ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ∀ 𝑘 ∈ 𝑦 𝜓 → ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜓 ) |
| 20 | 16 19 | anim12i | ⊢ ( ( ∀ 𝑘 ∈ 𝑥 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 𝜓 ) → ( ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜓 ) ) |
| 21 | r19.26 | ⊢ ( ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜓 ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( ∀ 𝑘 ∈ 𝑥 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 𝜓 ) → ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝜑 ∧ 𝜓 ) ) |
| 23 | raleq | ⊢ ( 𝑧 = ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝜑 ∧ 𝜓 ) ) ) | |
| 24 | 23 | rspcev | ⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ ran ℤ≥ ∧ ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝜑 ∧ 𝜓 ) ) → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) |
| 25 | 13 22 24 | syl2an | ⊢ ( ( ( 𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥ ) ∧ ( ∀ 𝑘 ∈ 𝑥 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 𝜓 ) ) → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) |
| 26 | 25 | an4s | ⊢ ( ( ( 𝑥 ∈ ran ℤ≥ ∧ ∀ 𝑘 ∈ 𝑥 𝜑 ) ∧ ( 𝑦 ∈ ran ℤ≥ ∧ ∀ 𝑘 ∈ 𝑦 𝜓 ) ) → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) |
| 27 | 26 | rexlimdvaa | ⊢ ( ( 𝑥 ∈ ran ℤ≥ ∧ ∀ 𝑘 ∈ 𝑥 𝜑 ) → ( ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) ) |
| 28 | 27 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑥 𝜑 → ( ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) ) |
| 29 | 28 | imp | ⊢ ( ( ∃ 𝑥 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑥 𝜑 ∧ ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 ) → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) |
| 30 | raleq | ⊢ ( 𝑧 = ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ) | |
| 31 | 30 | rexrn | ⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ) |
| 32 | 5 6 31 | mp2b | ⊢ ( ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
| 33 | 29 32 | sylib | ⊢ ( ( ∃ 𝑥 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑥 𝜑 ∧ ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
| 34 | 9 12 33 | syl2anbr | ⊢ ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
| 35 | 4 34 | impbii | ⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |