This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressuss | ⊢ ( 𝐴 ∈ 𝑉 → ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) = ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( UnifSet ‘ 𝑊 ) = ( UnifSet ‘ 𝑊 ) | |
| 3 | 1 2 | ussval | ⊢ ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( UnifSt ‘ 𝑊 ) |
| 4 | 3 | oveq1i | ⊢ ( ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ↾t ( 𝐴 × 𝐴 ) ) = ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) |
| 5 | fvex | ⊢ ( UnifSet ‘ 𝑊 ) ∈ V | |
| 6 | fvex | ⊢ ( Base ‘ 𝑊 ) ∈ V | |
| 7 | 6 6 | xpex | ⊢ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∈ V |
| 8 | sqxpexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × 𝐴 ) ∈ V ) | |
| 9 | restco | ⊢ ( ( ( UnifSet ‘ 𝑊 ) ∈ V ∧ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∈ V ∧ ( 𝐴 × 𝐴 ) ∈ V ) → ( ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ↾t ( 𝐴 × 𝐴 ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ) | |
| 10 | 5 7 8 9 | mp3an12i | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ↾t ( 𝐴 × 𝐴 ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 11 | 4 10 | eqtr3id | ⊢ ( 𝐴 ∈ 𝑉 → ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 12 | inxp | ⊢ ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) × ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) ) | |
| 13 | incom | ⊢ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) | |
| 14 | eqid | ⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) | |
| 15 | 14 1 | ressbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 16 | 13 15 | eqtr3id | ⊢ ( 𝐴 ∈ 𝑉 → ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 17 | 16 | sqxpeqd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) × ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) ) = ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) |
| 18 | 12 17 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( UnifSet ‘ 𝑊 ) ↾t ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) ) |
| 20 | 14 2 | ressunif | ⊢ ( 𝐴 ∈ 𝑉 → ( UnifSet ‘ 𝑊 ) = ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 21 | 20 | oveq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) = ( ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) ↾t ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) ) |
| 22 | eqid | ⊢ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) | |
| 23 | eqid | ⊢ ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) = ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) | |
| 24 | 22 23 | ussval | ⊢ ( ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) ↾t ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) = ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) |
| 25 | 24 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( ( UnifSet ‘ ( 𝑊 ↾s 𝐴 ) ) ↾t ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) × ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) = ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 26 | 19 21 25 | 3eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( UnifSet ‘ 𝑊 ) ↾t ( ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 27 | 11 26 | eqtr2d | ⊢ ( 𝐴 ∈ 𝑉 → ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) = ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ) |