This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restco | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐽 ↾t 𝐴 ) ↾t 𝐵 ) = ( 𝐽 ↾t ( 𝐴 ∩ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑦 ∈ V | |
| 2 | 1 | inex1 | ⊢ ( 𝑦 ∩ 𝐴 ) ∈ V |
| 3 | ineq1 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → ( 𝑥 ∩ 𝐵 ) = ( ( 𝑦 ∩ 𝐴 ) ∩ 𝐵 ) ) | |
| 4 | inass | ⊢ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝐵 ) = ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) | |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → ( 𝑥 ∩ 𝐵 ) = ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) |
| 6 | 2 5 | abrexco | ⊢ { 𝑧 ∣ ∃ 𝑥 ∈ { 𝑤 ∣ ∃ 𝑦 ∈ 𝐽 𝑤 = ( 𝑦 ∩ 𝐴 ) } 𝑧 = ( 𝑥 ∩ 𝐵 ) } = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐽 𝑧 = ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) } |
| 7 | eqid | ⊢ ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) | |
| 8 | 7 | rnmpt | ⊢ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) = { 𝑤 ∣ ∃ 𝑦 ∈ 𝐽 𝑤 = ( 𝑦 ∩ 𝐴 ) } |
| 9 | 8 | mpteq1i | ⊢ ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) = ( 𝑥 ∈ { 𝑤 ∣ ∃ 𝑦 ∈ 𝐽 𝑤 = ( 𝑦 ∩ 𝐴 ) } ↦ ( 𝑥 ∩ 𝐵 ) ) |
| 10 | 9 | rnmpt | ⊢ ran ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ { 𝑤 ∣ ∃ 𝑦 ∈ 𝐽 𝑤 = ( 𝑦 ∩ 𝐴 ) } 𝑧 = ( 𝑥 ∩ 𝐵 ) } |
| 11 | eqid | ⊢ ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 12 | 11 | rnmpt | ⊢ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐽 𝑧 = ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) } |
| 13 | 6 10 12 | 3eqtr4i | ⊢ ran ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) = ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) |
| 14 | restval | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ) | |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ) |
| 16 | 15 | oveq1d | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐽 ↾t 𝐴 ) ↾t 𝐵 ) = ( ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↾t 𝐵 ) ) |
| 17 | ovex | ⊢ ( 𝐽 ↾t 𝐴 ) ∈ V | |
| 18 | 15 17 | eqeltrrdi | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ∈ V ) |
| 19 | simp3 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 20 | restval | ⊢ ( ( ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ∈ V ∧ 𝐵 ∈ 𝑋 ) → ( ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↾t 𝐵 ) = ran ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) ) | |
| 21 | 18 19 20 | syl2anc | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↾t 𝐵 ) = ran ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) ) |
| 22 | 16 21 | eqtrd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐽 ↾t 𝐴 ) ↾t 𝐵 ) = ran ( 𝑥 ∈ ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ 𝐴 ) ) ↦ ( 𝑥 ∩ 𝐵 ) ) ) |
| 23 | simp1 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → 𝐽 ∈ 𝑉 ) | |
| 24 | inex1g | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
| 25 | 24 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
| 26 | restval | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) ∈ V ) → ( 𝐽 ↾t ( 𝐴 ∩ 𝐵 ) ) = ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) ) | |
| 27 | 23 25 26 | syl2anc | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐽 ↾t ( 𝐴 ∩ 𝐵 ) ) = ran ( 𝑦 ∈ 𝐽 ↦ ( 𝑦 ∩ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 28 | 13 22 27 | 3eqtr4a | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐽 ↾t 𝐴 ) ↾t 𝐵 ) = ( 𝐽 ↾t ( 𝐴 ∩ 𝐵 ) ) ) |