This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressuss | |- ( A e. V -> ( UnifSt ` ( W |`s A ) ) = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 2 | eqid | |- ( UnifSet ` W ) = ( UnifSet ` W ) |
|
| 3 | 1 2 | ussval | |- ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) = ( UnifSt ` W ) |
| 4 | 3 | oveq1i | |- ( ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) |`t ( A X. A ) ) = ( ( UnifSt ` W ) |`t ( A X. A ) ) |
| 5 | fvex | |- ( UnifSet ` W ) e. _V |
|
| 6 | fvex | |- ( Base ` W ) e. _V |
|
| 7 | 6 6 | xpex | |- ( ( Base ` W ) X. ( Base ` W ) ) e. _V |
| 8 | sqxpexg | |- ( A e. V -> ( A X. A ) e. _V ) |
|
| 9 | restco | |- ( ( ( UnifSet ` W ) e. _V /\ ( ( Base ` W ) X. ( Base ` W ) ) e. _V /\ ( A X. A ) e. _V ) -> ( ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) |`t ( A X. A ) ) = ( ( UnifSet ` W ) |`t ( ( ( Base ` W ) X. ( Base ` W ) ) i^i ( A X. A ) ) ) ) |
|
| 10 | 5 7 8 9 | mp3an12i | |- ( A e. V -> ( ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) |`t ( A X. A ) ) = ( ( UnifSet ` W ) |`t ( ( ( Base ` W ) X. ( Base ` W ) ) i^i ( A X. A ) ) ) ) |
| 11 | 4 10 | eqtr3id | |- ( A e. V -> ( ( UnifSt ` W ) |`t ( A X. A ) ) = ( ( UnifSet ` W ) |`t ( ( ( Base ` W ) X. ( Base ` W ) ) i^i ( A X. A ) ) ) ) |
| 12 | inxp | |- ( ( ( Base ` W ) X. ( Base ` W ) ) i^i ( A X. A ) ) = ( ( ( Base ` W ) i^i A ) X. ( ( Base ` W ) i^i A ) ) |
|
| 13 | incom | |- ( A i^i ( Base ` W ) ) = ( ( Base ` W ) i^i A ) |
|
| 14 | eqid | |- ( W |`s A ) = ( W |`s A ) |
|
| 15 | 14 1 | ressbas | |- ( A e. V -> ( A i^i ( Base ` W ) ) = ( Base ` ( W |`s A ) ) ) |
| 16 | 13 15 | eqtr3id | |- ( A e. V -> ( ( Base ` W ) i^i A ) = ( Base ` ( W |`s A ) ) ) |
| 17 | 16 | sqxpeqd | |- ( A e. V -> ( ( ( Base ` W ) i^i A ) X. ( ( Base ` W ) i^i A ) ) = ( ( Base ` ( W |`s A ) ) X. ( Base ` ( W |`s A ) ) ) ) |
| 18 | 12 17 | eqtrid | |- ( A e. V -> ( ( ( Base ` W ) X. ( Base ` W ) ) i^i ( A X. A ) ) = ( ( Base ` ( W |`s A ) ) X. ( Base ` ( W |`s A ) ) ) ) |
| 19 | 18 | oveq2d | |- ( A e. V -> ( ( UnifSet ` W ) |`t ( ( ( Base ` W ) X. ( Base ` W ) ) i^i ( A X. A ) ) ) = ( ( UnifSet ` W ) |`t ( ( Base ` ( W |`s A ) ) X. ( Base ` ( W |`s A ) ) ) ) ) |
| 20 | 14 2 | ressunif | |- ( A e. V -> ( UnifSet ` W ) = ( UnifSet ` ( W |`s A ) ) ) |
| 21 | 20 | oveq1d | |- ( A e. V -> ( ( UnifSet ` W ) |`t ( ( Base ` ( W |`s A ) ) X. ( Base ` ( W |`s A ) ) ) ) = ( ( UnifSet ` ( W |`s A ) ) |`t ( ( Base ` ( W |`s A ) ) X. ( Base ` ( W |`s A ) ) ) ) ) |
| 22 | eqid | |- ( Base ` ( W |`s A ) ) = ( Base ` ( W |`s A ) ) |
|
| 23 | eqid | |- ( UnifSet ` ( W |`s A ) ) = ( UnifSet ` ( W |`s A ) ) |
|
| 24 | 22 23 | ussval | |- ( ( UnifSet ` ( W |`s A ) ) |`t ( ( Base ` ( W |`s A ) ) X. ( Base ` ( W |`s A ) ) ) ) = ( UnifSt ` ( W |`s A ) ) |
| 25 | 24 | a1i | |- ( A e. V -> ( ( UnifSet ` ( W |`s A ) ) |`t ( ( Base ` ( W |`s A ) ) X. ( Base ` ( W |`s A ) ) ) ) = ( UnifSt ` ( W |`s A ) ) ) |
| 26 | 19 21 25 | 3eqtrd | |- ( A e. V -> ( ( UnifSet ` W ) |`t ( ( ( Base ` W ) X. ( Base ` W ) ) i^i ( A X. A ) ) ) = ( UnifSt ` ( W |`s A ) ) ) |
| 27 | 11 26 | eqtr2d | |- ( A e. V -> ( UnifSt ` ( W |`s A ) ) = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |